
www.manaraa.com

www.manaraa.com

SOFTWARE ENGINEERING
FOR LARGE SOFTWARE SYSTEMS

www.manaraa.com

Proceedings of the Centre for Software Reliability Conference entitled

Large Software Systems
held at The Watershed Media Centre, Bristol, UK

26-29 September 1989

Members of the Centre for Software Reliability

T. ANDERSON, Centre for Software Reliability, University of Newcastle upon Tyne,
UK

K. BENNETT, School of Engineering and Applied Science, University of Durham,
UK

R.E. BLOOMFIELD, Adelard, London, UK
RJ. COLE, Glasgow College, Glasgow, UK
CJ. DALE, CITI, Milton Keynes, UK
B. DE NEUMANN, Department of Mathematics, The City University, London, UK
J.E. DOBSON, Computing Laboratory, University of Newcastle upon Tyne, UK
N. FENTON, Centre for Software Reliability, The City University, London, UK
G.D. FREWIN, Standard Telecommunications Laboratories, Harlow, UK
M.A. HENNEL, Department of Statistics and Computational Mathematics, Uni-

versity of Liverpool, UK
D. INCE, Open University, Milton Keynes, UK
A.A. KAPOSI, South Bank Polytechnic, London, UK
B.A. KITCHENHAM, National Computing Centre, Manchester, UK
B. LITTLEWOOD, Centre for Software Reliability, The City University, London,

UK
J. McDERMID, Department of Computer Science, University of York, UK
R. MALCOLM, CAP Scientific, London, UK
P. MELLOR, Centre for Software Reliability, The City University, London, UK
M. MOULDING, Royal Military College of Science, Swindon, UK
M. OULD, PRAXIS, Bath, UK
P. ROOK, Marlow, UK
S. STOCKMAN, British Telecom Research Laboratories, Ipswich, UK
J.G. WALKER, STC Technology Ltd, Newcastle under Lyme, UK
A.A. WINGROVE, Farnborough, Hants, UK
R. WITTY, Software Engineering, Rutherford Laboratories, Didcot, UK

www.manaraa.com

SOFTWARE ENGINEERING
FOR LARGE

SOFTWARE SYSTEMS

Edited by

B.A. KITCHENHAM
Software Metrics Consultant,

The National Computing Centre,
Manchester, UK

ELSEVIER APPLIED SCIENCE
LONDON and NEW YORK

www.manaraa.com

ELSEVIER SCIENCE PUBLISHERS LTD
Crown House, Linton Road, Barking, Essex IGII 8JU, England

Sale Distributor in the USA and Canada
ELSEVIER SCIENCE PUBLISHING CO., INC.

655 Avenue of the Americas, New York, NY 10010, USA

WITH 46 ILLUSTRATIONS

© 1990 ELSEVIER SCIENCE PUBLISHERS LTD
© 1990 INSTITUTION OF ELECTRICAL ENGINEERS-Chapter 2

© 1990 T.A. PARKER-Chapter 11
© 1990 K3 GROUP LIMITED--Chapter 12

© 1990 J.c.P. WOODOCK---Chapter 18

British Library Cataloguing in Publication Data

Centre for Software Reliability, Conference (6th; 1989;
Watershed Media Centre)
Software engineering for large software systems.
1. Computer systems. Software. Development and maintenance.
Management
I. Title II . Kitchenham, B.A.
005.1

Library of Congress CIP data applied for

ISBN-13: 978-94-010-6833-8
DOl: 10.1007/978-94-009-0771-3

e-ISBN-13: 978-94-009-0771-3

Softcover reprint of the hardcover 1 st edition 1990

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as
a matter of products liability, negligence or otherwise, or from any use or operation of any methods,

products, instructions or ideas contained in the material herein.

Special regulations for readers in the USA

This publication has been registered with the Copyright Clearance Center Inc. (Ccq, Salem,
Massachusetts. Information can be obtained from the CCC about conditions under which photocopies
of parts of this publication may be made in the USA. All other copyright questions, including

photocopying outside the USA, should be referred to the publisher.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of the publisher.

www.manaraa.com

v

Preface

These proceedings include tutorials and papers presented at the Sixth CSR Confer
ence on the topic of Large Software Systems. The aim of the Conference was to
identify solutions to the problems of developing and maintaining large software
systems, based on approaches which are currently being undertaken by software
practitioners. These proceedings are intended to make these solutions more widely
available to the software industry.

The papers from software practitioners describe:

• important working systems, highlighting their problems and successes;
• techniques for large system development and maintenance, including project

management, quality management, incremental delivery, system security, in
dependent V & V, and reverse engineering.

In addition, academic and industrial researchers discuss the practical impact of
current research in formal methods, object-oriented design and advanced environ
ments.

The keynote paper is provided by Professor Brian Warboys of ICL and the
University of Manchester, who masterminded the development of the ICL VME
Operating System, and the production of the first database-driven software en
gineering environment (CADES).

The proceedings commence with reports of the two tutorial sessions which
preceded the conference:

• Professor Keith Bennett of the Centre for Software Maintenance at Durham
University on Software Maintenance;

• Professor John McDermid of the University of York on Systems Engineering
Environments for High Integrity Systems.

The remaining papers deal with reports on existing systems (starting with Professor
Warboys' keynote paper), approaches to large systems development, methods for
large systems maintenance and the expected impact of current research.

I should like to thank Professor Darrel Ince, Professor Bernard de Neumann and
Mr John Walker for their help with the preparation of the conference programme,
and Ms Carol Allen of the Centre for Software Reliability (City University) for
organising the conference.

BARBARA KITCHENHAM

www.manaraa.com

Vll

Contents

Preface

List of Contributors

The Software Maintenance of Large Software Systems:
Management, Methods and Tools
K.H. Bennett

v

IX

2 Integrated Project Support Environments: General Principles and

3

4

Issues in the Development of High Integrity Systems 27
I.A . McDermid

Reflections on a Large Software Development Project.
B. Warboys

A Large Embedded System Project Case StUdy.
B. Malcolm

84

96

5 Design of a Flight and Radar Processing System for the Support of

6

Air Traffic Control .. 122
S.C. Willmott

An Architecture for Multi-Vendor Systems
I. Dobson

141

7 Incremental Development and Delivery for Large Software Systems 156

8

9

D.R. Graham

Independence in Verification and Validation.
R.N. Hall

The Recovery of Software Projects.
S.G. Stockman

196

209

www.manaraa.com

Vlll

10 Software Reliability Improvement-The Fault Free Factory (A Case
Study). 220
B. Chatters

II Structuring Trust in a Large General Purpose Operating System 236

12

T.A. Parker

Software Re-engineering-An Intermediate Approach .
R.H. Warden

252

13 The Maintenance of Large, Real-Time Embedded Systems from the
Perspective of Knowledge Engineering 267
K.J. Pulford

14 A Practical Procedure for Introducing Data Collection (with
Examples from Maintenance) 281
S. Linkman, L. Pickard and N. Ross

15 Process Support Environments and their Application to Large Scale
Systems . 305
P. Westmacott

16

17

Object-Oriented Design: A Teenage Technology
I. Sommerville

Software Architecture Modelling.
C. Minkowitz

315

325

18 Mathematics as a Management Tool: Proof Rules for Promotion. 345
].c.P. Woodcock

Index 367

www.manaraa.com

IX

List of Contributors

K.H. BENNETT

Centrefor Software Maintenance, University of Durham, Durham DHI 3LE, UK

B. CHATTERS

ICL Mainframe Systems, Wenlock Way, West Gorton , Manchester M12 5DR,
UK

J. DOBSON

Computing Laboratory, University of Newcastle upon Tyne, Newcastle upon Tyne
NEI 7RU, UK

D.R. GRAHAM

Grove Consultants, Grove House, 40 Ryles Park Road, Macclesfield SKI 1 8AH,
UK

R.N. HALL

GEC Avionics Ltd, Airport Works, Rochester, Kent MEl 2XX, UK

S. LINKMAN

STC Technology Ltd, Copthall House, Nelson Place, Newcastle under Lyme,
Staffordshire ST5 lE2, UK

B. MALCOLM

Malcolm Associates Ltd, Savoy Hill House, Savoy Hill, London WC2, UK

J.A. McDERMID

Department of Computer Science, University of York, York Y015DD, UK

C. MINKOWITZ

STC Technology Ltd, Copthall House, Nelson Place, Newcastle under Lyme,
Staffordshire ST5 lE2, UK

www.manaraa.com

x

T.A. PARKER

ICL Defence Systems, Eskdale Road, Winnersh, Wokingham , Berks RGll 5TT,
UK

L. PICKARD

STC Technology Ltd, Copthall House, Nelson Place, Newcastle under Lyme,
Staffordshire ST5 1E2, UK

KJ. PuLFORD

GEC-Marconi Software Systems, Elstree Way, Borehamwood, Herts WD6 1RX,
UK

N. Ross
STC Technology Ltd, Copthall House, Nelson Place, Newcastle under Lyme,
Staffordshire ST5 1E2, UK

I. SOMMERVILLE

Computing Department, Lancaster University , Lancaster LA1 4YR, UK

S.G. STOCKMAN

Systems and Software Engineering, Research Division, British Telecom Research
Laboratories, Martlesham Heath , Suffolk, UK

B. WARBOYS

Department of Computer Science, University of Manchester , Oxford Road,
Manchester MJ3 9PL, UK

R.H. WARDEN

K3 Group Ltd, Severn House, Prescott Drive, Worcester WR49NE, UK

P. WESTMACOTT

STC Technology Ltd, Copthall House, Nelson Place, Newcastle under Lyme,
Staffordshire ST5 1E2, UK

S.C. WILLMOTT

UK Civil Aviation Authority, CAA House, 45-59 Kingsway , London WC2B 6TE,
UK

J.c.P. WOODCOCK

Oxford University Computing Laboratory, Programming Research Group, 8-11
Keble Road, Oxford OX1 3QD, UK

www.manaraa.com

1
THE SOFTWARE MAINTENANCE OF LARGE SOFTWARE

SYSTEMS:

MANAGEMENT, METHODS AND TOOLS

Abstract

K H Bennett

Centre for Software Maintenance

University of Durham

Durham

England

DHl 3LE

Software Maintenance is the general name given to the set of activities undertaken

on a software system following its release for operational use. Surveys have shown

that for many projects, software maintenance consumes the majority of the overall

software lifecyde costs, and there are indications that the proportion is increasing. Our

inability to cope with software maintenance can also result in a backlog of application

modifications.

Sustaining the viability of a large soft.ware system over many years at an acceptable

quality level is a major challenge. This paper discusses the management of the software

maintenance process addressing both the organisational context and the implementa

tion of the management plan in terms of the methods available and the tool support

for those methods.

1 Introduction

The development of a software syst.em is complete when the product is delivered to

the customer 01' client, and the software installed and released for operational use. We

shall use the term software maintenance to encompass the activities (technical and

managerial) that are undertaken on the software subsequently. The term software

maintenance has become well established in the computing profession, but in many

ways it is an unfortunate choice of words, suggesting parallels or similarities with

hardware maintenance . Hardware maintenance is required because of the progressive

degradation or weal'ing Ollt of physical materials whereas software is not subject to

www.manaraa.com

2

such factors.

It is recognised that some organisations use terms such as enhancement or system

redevelopment to express activities that we shall classify as software maintenance. Some

professionals use software maintenance to refer only to bug-fixing. We justify the

broader definition of the term because the management approach, the methods and

the tool support are common, yet differ substantially from initial development.

We shall argue in section two that the major concern of software maintenance is with

system evolution. There is hence a strong relationship between software maintenance

and software reliability, since it is not sufficient simply to produce a reliable system

in the first place: the reliability of that system must be sustained over a period of

many years, in the face of staff turnover, changes in software technoloay , and new

management methods. Military software in particular may have a lifetime of several

decades . It is not sensible to argue that software should not change. It seems inevitable

that the more successful a software system is, the more pressing will be the demands

for it t.o evolve to meet. new r<'qllirement.s.

Software maintenance has traditionally been regarded as of very low status within

the computing community. Schneidewind (Schneidewind 1987) in his survey paper

concludes that there is a general acknowledgement that the subject is an important

area but at the same time that there is a substantial technical neglect in the study

of it . In other engineering disciplines, maintenance is not a professional - track career

(e.g. motor-car maintenance, lawnmower maintenance etc.) and this is another reason

why the term software maint.enance is not. ideal. In the USA, there are attempts to

change the name to software management to avoid the unwelcome connotations of

maintenance. However in this paper we shall use conventional terminology.

There are a number of indications that the status of software maintenance is improving,

and this welcome change is addressed in Section 5. The remainder of the paper is

structured as follows. Section 2 defines four categories of software maintenance, and

assesses their economic implications. Section 3 addresses the problem of maintaining

existing code, which typically is poorly documented and has been developed without the

benefit of modern software engineering technology. Section 4 considers the production

of software which is easy to maintain. We shall define the ease with which software

can be maintained as its maintainability.

Finally, Section 6 suggests a number of areas which need further research and devel

opment.

www.manaraa.com

3

2 What is software maintenance?

2.1 Four types of maintenance activity

Software maintenance is required for three principal reasons (Lientz & Swanson 1980,

Lientz, Tompkins & Swanson 1978, Swanson 1976) . Firstly, there may be a fault in the

software, so that its behaviour does not conform to its specification. This fault may

contradict the specification, or it may demonstrate that the specification is incomplete

(or possibly inconsistent), so that the user's assumed specification is not sustained .

Typically, the fault will have manifested itself in the form of an error when the program

has been run, and the fault. mllst be removed. This is termed corrective maintenance,

though colloquially it is often called bug-fixing. The computing profession abounds

with anecdotes of emergency repairs (patchin.g) - these can cause great difficulties for

subsequent maintenance work.

Even if a software system is fault-free, the environment in which it operates will often

be subject to change. The manufacturer may introduce new versions of the operating

system, or remove support for existing facilities. The software may be ported to a new

environment, or to different hardware. Modifications performed as a result of changes

to the external environment are categorised as adaptive maintenance.

The third category of maintenance is called perfective maintenance. This is undertaken

as a consequence of a change in user requirements of the software. For example, a

payroll suite may need to be altered to reflect new taxation laws; a real-time power

station control system may need upgrading to meet new safety standards. A "rule of

thumb" often used in industry is that around 10% of a software system will change

each year because of modifications to the user requirements.

Finally, preventative maintenance may be undertaken on a system in order to anticipate

future problems and make subsequent maintenance easier . For example, a particular

part of a large suite may have been found to require sustained corrective maintenance

over a period of time. It could be sensible to re-implement this part, using modern

software engineering technology, in the expectation that subsequent errors will be much

reduced .

As noted in Section 1, not all organisations recognise adaptive and perfective mainte

nance as such , classifying them as ' redevelopment', 'evolution' or 'enhancement '. We

www.manaraa.com

4

argue that there is a key difference between software development and software main

tenance as defined here . In the former, the project is undertaken within a timescale,

and to a budget. An identifiable product, meeting the original customer requirement,

is the deliverable. In contrast, software maintenance is usually open ended, continuing

for many years, and this is seen as a revenue item. It is often the objective to extend

the life of the software system for as long as economically possible.

2.2 Cost of software maintenance

It is generally recognised that. software maint.enance consumes a large part of the life

cycle costs of a software product, and hence the total cost of maintenance is huge. At

a recent workshop on maintenance (Munro & Call iss 1987), it was informally reported

that in the UK, £1 Billion is spent on software maintenance, while in the US, 2% of

the GNP is consumed by software maintenance. These figures must be taken simply as

guesses, but there is general agreement in the community that the magnitude is very

large. Only one major survey has been undertaken to try to quantify the cost. This

was carried by out by Lientz and Swanson (Lientz et aI, 1980) in the late 1970's, and

produced a number of result.s of int.erest. . The mean distribut.ion of effort expended on

maintenance in 487 DP organisations was found to be:

Perfective 50%

Adaptive 25%

Corrective 21%

Preventive 4%

This suggests that "corrective maint.enance" is a relatively small proportion of software

maintenance. Clearly, prevent.ive maintenance is not undertaken to any significant

degree in the computing industry.

Lientz and Swanson also found that many organisations were spending 20%-70% of

their computing (EDP) effort on maintenance. The proportion was influenced by the

type of organisation; for example, consultancies spend only a small revenue on mainte

nance while EDP organisations spend a very substantial part of their budget. Results

described by Dit.ri (Ditri, Shaw & Atkins 1971) and Hoskyns Ltd (Hoskyns 1973) pro

vide support for these figures, though it. is difficult directly to compare results as costs

may be measured in different ways.

www.manaraa.com

5

So far, attention has been directed at the direct costs of maintenance, but there are

indirect costs which are more difficult to quantify. Many organisations rely on I.T. to

maintain a competitive edge, and hence their software systems must be modified quickly

and reliably. Unfortunately, serious delays are incurred because perfective maintenance

cannot achieve these goals. The problem is known as the applications backlog, and

delays of up to two years have been reported informally. One management approach

divides modifications into essential and desirable to attempt to alleviate the backlog,

but the basic difficulty remains. It is also a powerful stimulus for computing to be

taken on by the end user, who finally runs out of patience with the EDP department

for taking so long t.o make what is considered a simple change!

Much of t.he technological development. in soft.ware engineering has been focussed on the

early, development phases. This has been based on the assumption that high software

quality is an end-product of the initial development. However, quality must be sus

tained, perhaps over many years , in an evolving system. While development is clearly

of great importance, all surveys confirm the general result that it is software mainte

nance which is costly and lacks R&D input. This is the seven-eighths of the iceberg,

which lurks out of sight of the development team, but may cause the organisational

ship to founder unless the problems are anticipated , and solutions planned.

3 The maintenance of existing code

3.1 Characteristics of existing code

There is an enormous fina.ncial invest.llIent in existing software which has been produced

through conventional or ad-hoc soft,ware engineering methods. Most of the software

that is currently being writ,ten falls into this category. It is economically infeasible

simply to discard this software and replace it by either off-the-shelf packages (if they

exist), or by a rewritten system using modern engineering approaches. Much of this

software will be required for many years yet. Furthermore, such software represents

the accumulation of years of experience and refinement, and however imperfect, it is a

valuable asset! Such software hIlS been termed 'geriatric code', referring to the problem

of sustaining the viabilit.y of wde writ.t.en many years ago and modified subsequently

in an unmanaged way.

www.manaraa.com

6

The major problems of maintaining old software (Schneiderman 1987) are :

1. most existing software is unstructured, and much was produced before the in

troduction of st.ructured programming methods (Zvegintzov 1983) . Source codes

may be written in assembler or even machine code.

2. maintenance programmers have not been involved in the development of a prod

uct and find it difficult to map program actions to program source codes

3. the documentation of software is often non-existent , or incomplete, or out of date

(Chapin 1985). Even if it is available, the documentation may not actually help

the maintenance st.aff in an effective way

4. the ripple effect. of changes t.o source codes are difficult. to predict (Yau & Collofello

1985).

A major concern of maintenance programmers is the avoidance of introducing more

problems than are solved by a modification . It was reported that in 05/360 (Brooks

1975), the number of known faults reached a steady state, despite a continuing pro

gramme of corrective maintenance to eliminate them.

We shall consider the maintenance of existing code under the following headings:

• maintenance management.

• change control and configuration management

• program evolution and lifecycle model

• maintenance metrics

• program comprehension

• software reusability

• inverse engineering

• qualit.y assurance

3.2 Maintenance management

Maintenance may be organised according to several models. TraC\itionaliy, software

maintenance has been regarded as the final phase of the software lifecycle which can

www.manaraa.com

7

be managed quite separal.ely from development. The most extreme example of this

occurs when an organisat.ion hands over its system to an external contractor who takes

over all responsibility for mainl.enance following an initial investigatory period. A small

number of companies specialize in offering this type of service. More commonly, the

software is developed by an in-house team and then passed over to a maintenance

group.

A different model, less common but gaining in popularity, is to retain the same team

both to develop and maintain a product .. There is a stronger incentive for such a team

to anticipate and prepare for maintenance. This approach may gain further acceptance

as the status of soft.ware maintenance improves.

It is also possible to hand over responsibility for maintenance to the end-users. Tools

such as Fourth Generation Languages (4GLs) claim to enable the user to construct

rapid prototypes and maintenance is achieved by a I.hrow-away policy. This model has

obvious drawbacks and needs 1.0 be used wil.h care (the corporate database cannot be

maintained in this mannerl) but the move to expanding system functionality by code

from user-produced application generat.ors is growing rapidly in some sectors .

The human aspect.s area of maint.enance management needs careful attention to reduce

the problems of perceived low st.at.us and poor career structu re, with consequent job

mobility. Although this is not. 11 well docump-nl.ed area, some additional information is

given in (Munro et aI, 1987a), (Boehm 1983) and (Parikh 1986).

The ability of management to plan, monitor and control software maintenance depends

on establishing clear methods. There are currently no commonly accepted or "industry

standard" methods for software maintenance, as exist for software development (e.g.

JSD, SSADM, Yourdon etc) . As a consequence, tool support for methods is fragmented,

with particular tools addressing one maintenance activity in isolation from a general

approach .

Yau and Collofello (Yau 1979) have identified fOllr basic steps in managing the main

tenance phase:

1. understanding of the software;

2. determination of why a change is needed and what method will be used;

3. implementing t.he chang(':

4. validating the change.

www.manaraa.com

8

3.3 Program evolution and lifecycle models

Traditionally, software maintenance has remained a final, independent phase on most

lifecycle models, which concentrate on the development phase. This has led to a number

of criticisms (e.g. McCracken & Jackson 1982, Gladden 1982). A view put forward

by Lehman and Belady (Lehman 1980, Lehman 1984, Belady & Lehman 1976) is that

large software systems evolve over time and reach a state of stability through a process

of incremental enhancement. This suggests that perfective maintenance should be

undertaken as a series of modest, subprojec.t.s, each wit,h a modest goal and a budget of

perhaps a few pl'rson-years . Th" major issu~s here are the int,ervals at which new system

versions are released (see section 3.4); program comprehension and understanding in

order to be able to make alterations to the program; and tracing the changes and

retesting the altered program.

A major topic in current software development research is the IPSE (Integrated Project

Support Environment) which aims to support an integrated toolset to meet the needs

of all parts of the software project, lifecycle. This work is not addressing adequately the

needs of maint.enance. As an example. an import,ant. consideration in the development

of a maintenance lifecycle model is the inclusion of change request handling (a change

request is an input from a user or customer asking for a specific corrective, perfective

or adaptive maintenance task to be performed). Change requests need to be logged,

coordinated, and related to the corresponding requirements, specification and design

changes. The QA procedures (e.g. t.est suite runs and result.s) also need recording. The

argument that. JPSEs are simply a framework for a toolset. is insufficient. Most IPSEs

implicitly or explicitly lise some model of software development in their architecture.

In recognition of the existence of large amonnts of geriatric code, the approach we are

taking at Durham is to develop an int,egrated maintenance support environment, which

at least addresses the method and t.ool needs of the maintenance phase in a coherent

way.

3.4 Version control and configuration management

A software manufact.urer sells n copies of a program suite ; in due course, a customer

reports an error, and the manufacturer dispatches a fix to the complainant. Other

customers report different bngs, which are fixed by different changes. The manufacturer

also discovers and fixes errors. It is evident that soon the customer base is filled

www.manaraa.com

9

with slightly different var'iants of the same software. Not all fixes may be mutually

compatible, and chaos soon reigns. Additionally, there will be requests for evolutionary

changes to the software, so the manufacturer maintains many slightly different versions

of the original product.

This problem was known well before software was invented, in other engineering fields .

The solution is to use a version and configuration management system. Each revision

of a component has an associated version num.ber, which increases in time. In a simple

system, a linear scheme is sufficient (version I, version 2 ...). In due course, a consis

tent collection of (usually) latest. versions is brought together as an operating, tested

system. This is t.crrned a release. Agaiu, a simple linear scheme may be used. Often,

a structured identifier is used e.g. Release 4.2 where the first integer refers to a major

release incorporating significant changes, while the second integer denotes minor alter

ations only (perhaps small bug fixes or a variant). A structured identifier may also be

used for versions e.g. 6.3.4.2 might refer to the second minor change to version 4 of a

component in release 6.3.

Version management. is basic t.o soft.wa.re maint.enance and should be used in large and

small projects (see (Buckle 1982), (Birsoff, Henderson and Seigel 1980), (Babich 1986)

and (Bazelmans 1985)). It. is one area where ample t.ool support exists e.g. DSEE

(Leblang & Chase 1985), SCCS (Rochkind 1975) and (Tichy 1985).

Version management is a part of configuration management. A configuration of software

modules refers to their int.errelationship and structure which determines the overall

structure of the system of which they form t.he components. A software module may

be source code, but. more generally will refer t.o any system component used in the

production process eg test suites, documentat.ion, requirements reports, PERT charts

etc. Configuration management. should support t.he following:

• the naming of configuration components

• an auditing process to check conformance to standards and to extract manage

ment summary information

• a detailed complet.e hist.orical record of the project throughout its lifetime

• support 0[' a control syst.em for managing chRnges to components

• the availahility of a library sllpport system

This allows scope for automating the building of a release from its components.

www.manaraa.com

10

The UNIX make tool (Feldman 1979) is a well known utility which enables the user to

define component int,erdependcncit's, and then take associat,ed actions should a com

ponent become out of date, This is a very llseful, widely used tool, though it has some

notable drawbacks e.g .

• the tools used to build the release from component versions cannot themselves

be brought within the version control system. For example, it is often the case

that a system must be generated using a particular version of a compiler etc .

• only time may be used t,o indicat.e a component needs regenerating. Other vari

ables could include : QA status, version number, etc.

3.5 Metrics of maintenance

A metric is a quant.itative measure representing some property of the software. It is a

rule for assigning a number or ident,ifier to a software object in order to characterize

that object (Dunsmore 1981). A Inl'tric may be a predictive such that it is derived

from an underlying t.heoret.ical analytical model; or it may be phenomenological, in

that there appears t.o exist some correlation between the metric and the property but

an explanation is lacking.

Maintenance metrics can be categorised as:

1. maintainability metrics: can we predict how easy a system will be to maintain at

the design or even specificat,ion stage? This is considered in sect.ion 4.

2. maintenance metrics: how should we predict the cost of maintenance during the

maintenance phase?

There is an extensive lit.erature on software metrics, though the field can be charac

terised as lacking theoretical foundations. Most maintenance metrics are expressed in

terms of source code; although it may be desirable to analyse design information and

documentation, these are unlikely to be available.

Source code metrics may be applied at, the microscopic level (source statement/module)

and the system structure level. Probably the best known metrics are the complexity

metrics proposed by Halstead (Halstead 1977) and by McCabe (McCabe 1976). Such

www.manaraa.com

II

metrics try to give a measure t.o the underst.andability of a system, on the assumption

that a less complex program is easier to maintain. Also of importance is Yau and

Collofello's stability metrics (Yau et. al. 1979) which measure the assumptions made by

the modules on the module under examination . This is relevant to the minimisation of

ripple effects caused by interaction bet.ween modules.

For metrics to be used with any confidence, they must be validated, that is, we must

establish the degree to which the metric actually represents the particular attribute or

property in which we are interested. In a subject with weak theoretical foundations,

this proves difficult, though it has stimulated a great deal of work over the last ten

years.

Work on metrics has prompted a number of tools to collect and analyse data. These

can be built into compilers, though t.his is rare. More recently, so-called "CASE" tools

employing graphics have been used to calculate and present metrics.

It can be seen that t.he topic of software metrics extends well beyond maintenance,

and we have ident ified the main t.hemes of metric identification, validation and tool

support.

3.6 Program Comprehension and Understanding

At the heart of the software maintenance process is the maintenance programmers com

prehension and understanding of programs. Many theories of program comprehension

have been proposed . A review is available in (Robson, Bennett, Cornelius & Munro

1988).

Shneiderman and Mayer (Schneiderman & Mayer 1979) argue that comprehension is

based on syntactic and semantic knowledge. Syntactic knowledge is the knowledge

of the format of various statements in the language concerned . Semantic knowledge

consists of more general concepts which are independent of the programming language.

The authors argue that comprehension involves applying the syntactic knowledge to

develop an internal semantic representation. This internal representation can then be

altered or t.ranslat.ed into an alt.f'rnll.t.ive programming language .

Brooks (Brooks 1983) puts forward a theory of program comprehension which is based

on the hypothesis of a mapping between t.he problem domain and the programming

www.manaraa.com

12

domain. He argues that the developer produces these mappings and the maintainer has

to reconstruct. them. He views this rewnsl.ruction as a bottom-up approach rather than

the more usual t.op-down approach 1.0 uesrgn. He also -argues' that the reconstruction of

the mappings is an iterative, progressive activity. Thus a maintainer might start with

an initial hypothesis which is adapted as more knowledge of the program is gained. He

suggests that the initial hypothesis might be formed from just the name of a particular

activity. Brooks also argues that one of the differences between programmers and their

ability to comprehend programs is their domain knowledge. Thus in order to make

comprehension easier it is important not only to state the requirements, but also a

history of the decisions I.hat. led 1.0 t.hose reqllirements.

Letovsky (Letovsky 1986) describes an experiment in which maintenance program

mers were given a program to modify and encouraged to think out aloud so that their

thoughts could be recorded . From the recordings he focuses on two types of events,

namely questions and conjectures and develops taxonomies of these events . His taxon

omy of questions leads him to hypothesise that a mixture of top-down and bottom-up

strategies are employed during comprehension, where the top layer is the specification

and the bottom is the implement.at.ion. These two layers are connected through various

intermediate levels t.o form the programmer's ment.al model of the program. This work

has been extended by Letovsky and Soloway (Letovsky & Soloway 1986).

Several techniques and systems have been developed to automate code reading to facil

itate program understanding. The techniques used can be categorised into either static

or dynamic analysis strategies.

Static analysis is t.he analysis of a program wit.hout. its execution and an overview of this

topic is given by Fairley (Fairley 1978). Wil.h a st.at.ic analyser it is possible to identify

uninitialised variables. departures from coding standards, code which can never be

executed, the frequency of use of statements and to obtain cross reference information.

More recent work is described by Calliss and Cornelius (Calliss & Cornelius 1988).

Ryder (Ryder 1979, Ryder 1987) has applied static analysis techniques to develop call

graphs of a system which have aided the maintenance programmer's understanding of

a system.

Several tools based on this approach are now available commercially. Some are aimed

specifically at COBOL sources, while others present a selection of source languages.

Systems which have been specifically developed to aid understanding have frequently

www.manaraa.com

13

been based on cross referencers. Munro and Robson (Munro & Robson 1987) have

described a system which allows the user to submit queries to determine where a

variable is used or where a particular procedure is called from. Unlike most simple

cross referencers, the system is aware of the scope rules of the target language and

can distinguish between different uses of the same name. A documentation system

for recording the knowledge obtained from the source code with the cross reference

information has also been developed (Foster & Munro 1987).

3.7 Software reusability

This is a research field in its own right (see for example the IEEE special issue (IEEE

1984)) but has strong links with soft.ware maintenance in the following way. In main

taining a system, we are trying to identify those parts that can remain unchanged (i.e.

reused) and those part.s which require replacement or modification. A "part" may refer

not only to a component such as a module, but also to a design process, a specification

etc. The main thrust of work on reuse is concerned with generic component libraries

with some form of associated intelligent information retrieval. However, the record

ing of developmenth1stories and high level absirnctions for components poses similar

challenges to those found in program comprehension.

Tools such as 4GL's and pa.rser writ.ers represent reuse of design information. The

maintenance of "programs" for these t.ools is not yet well understood. The claim has

been made that software produced by 4GL's will not require maintenance - it will be

discarded and replaced. This claim has to stand the test of time.

3.8 Inverse Engineering

Inverse engineering is defined as the process of recreating the requirements, specifi

cation and design of an applic1lt.ions syst.em from the existing source code, and the

creation of new code from t.he old.

The conversion of unstructured source code into structured code by means of some

restructuring tool is a reasonably well understood problem (Bush 1985). We shall

term this rever~e engineering; the term re-engineering is also used in the USA. Sev

eral restructuring I,ools are available on the commercial market. Examples include

RETROFIT from Peat. Marwick (Miller, 1983), RECODER from Language Technology

www.manaraa.com

14

and SUPERSTRUCTURE from Group Operations Inc. These basically use compiler

writing technology to parse the input, normalise it and output in well structured form.

A key requirement is that the unstructured and restructured program should have

identical behaviours under all valid inputs. Problems can occur when assumptions

have been made by programmers about constructs where semantics are deliberately

not defined by the language definit.ion, or where the language allows access to machine

dependent. act.ivities.

In a more recent approach, Ward (Ward 1988) has developed a novel transformational

theory in which a construct in a given language can be provably transformed to an

equivalent construct or constructs in the same language. A catalogue of such transfor

mations has been developed, so that a programmer can convert a program by applica

tion of one or more transformat.ions from (say) an unstructured form to a structured

form, withollt being concernf'fl wit.h how 1.0 apply the transformations.

This approach can be extended t.o I.ransform a program in one language into an equiv

alent program in another . Firstly, a "core language" with mathematically defined

semantics is used . This is extended by definitional-transformations to an intermediate

language, into which our source language is converted by conventional compiler-writing

techniques. Each source language is extended by its own set of definitional transfor

mations.

Transformations are pe.-forlllcd 011 I.h .. illl.erlllcdiate representation, and finally the pro

gram is converted (again by compiling type techniques) into the destination code. In

(Ward 1988) Ward demonst.rates this, showing in steps how an initially highly unstruc

tured program is converted int.o a structured program, uncovering a serious program

error in the process.

In more recent work, a high level specification language is chosen as the destination

language, so that we can move formally from unstructured code to a structured spec

ification . This may be lIsf'd as an aid t.o program lIndersl.anding, or as a specification

for reimplementation of t.he original codc.

The key issue in this system (as in theorem-provers) is the selection of which trans

formation to apply next . Humans become very adept at this, and Ward is currently

building an expert system to try to incorporate the expertise in order to produce an

advisor for the maintenance programmer.

A serious criticism of I.his type of approach is that inverse engineering a large soft-

www.manaraa.com

15

ware system would be an enormous effort. However. Foster and Munro (Foster et al

1987) have shown that a viable strategy is to concentrate only on those parts of the

system that require modification. leaving the remainder alone. This has an additional

advantage that it is more motivating for the maintenance staff. Other related work

includes Arango's TMM transformation system (Arango, Baxter, Freeman & Pidgeon

1986). The IBM Federal Sysl.ems Division has reported on a major effort to upgrade

the 20 year old Federal Aviation AOlllinistratioil National Airspace System by mod

elling programs as either function ahstract.ions or data abstractions (Britcher & Craig

1986). Sneed (Sneed 1984) describes a case study in which a large suite of PL/l pro

grams were renewed by redocumentation using an automatic static analyser. This was

developed further in (Sneed & Jandrasics 1987); it represents an interesting approach.

by trying to recapture design information.

The current best. somce of mat.erial on t.he sl.at.e of the arl. of reverse engineering is in

the IEEE Tutorial on Software Rest.rllct.uring edited by Robert Arnold (Arnold 1986).

3.9 Quality assurance

The issue of quality assurance (QA) is very wide. so only points directly related to

maintenance will be considered here.

The quality of software product.s s"ellls likely to be a matter of greatly increasing

importance in thp. 1990's. For soft.ware maint.enance staff. the quality of the original

product might not simply be sustained subsequently, but improved to meet rising

expectations. For management, each incremental evolutionary step will need to be

accompanied by thorough regression testing (Harman & Robson 1988). Currently.

there are no standards in software maintenance procedures (by stand'ards we mean

both those defined by National Standards Organisations and what are called "industry

standards") . This reflects the relative immaturity of the subject, but it is certain that

increasing quality expectations will force both more productivity in the maintenance

phase together wit.h an increased emphasis and sophistication of testing, including

automatic test. suite generation . In contrast, most QA work is neglecting software

maintenance.

www.manaraa.com

16

3.10 Summary

Maintenance of existing, inst.alled soft.ware is consuming very large resources. Good

management of software maintenance is an achievable objective, but there is inade

quate technical support from methods and tools. Standards in the field are completely

lacking. Many tools in current use derive from the initial development phase, and are

not well suited to the needs of maintainers.

In the USA a section of the General Service Administration (GSA), an office of the

Federal Government called the Federal Software Management Center, has identified

software maint.enance as a major problelll area and est.ablished a t.ask force to as

sess, select and support. software maint.elJance l.ools. It has identified eleven classes

of maintenance tools and invit.ed t.ool vendors to submit their existing tools as a can

didate for inclusion in a Programmers Workbench aimed at providing tools for the

maintenance of COBOL programs. The categories of tools identified by the GSA were

test coverage monitor, source compare, file compare, translator, reformatter, data stan

dardisation tool, restnteturing tool, code analyser, cross referencer, documentation and

metric analyser, and a data manipulatIon tool. The full struct.ure of the Programmers

Workbench has heen descrihccl ill Sortwarf' Maint.enance News (Zvegintzov 1986) and

reported in (1\1l1nro et al Ig87a).

Another US organisation, the National Bureau of Standards has been active in pro

ducing management guides which provide methods and procedures for conducting an

effective maintenance programme (Martin & Osborne 1983, McCall, Herdon & Osborne

1985).

4 Software maintainability

4.1 Problems of maintainability

How do we avoid t.he mist.akes of t.he past? How do we write sonware that is cheap,

quick and easy t.o maintain?

There is a huge amount of literature in t.he annals of programming language develop

ment concerned with the relat.ionship between program constructs and the associated

ease of programming and maintenance. Topics to have been scrutinized in particular

www.manaraa.com

17

include comments, information hiding, dat.a abstraction, variable names, and program

layout.

In the early days of programming, machine resources were modest, and quality was

equated to efficiency. Current.ly, maintainability is regarded as a prime indicator of

program quality, despit.e the fact that. maintainability is not well understood , certainly

to the extent that we are not really sure how to measure it.

We argue that the strategic mistake made by the "programming language" school has

been to regard the end program as being of central importance for a maintainable sys

tem. It is now widely accept.ed that. the use of structured design techniques is important

for maintainability, part.icularly if a record of design history can be retained . This is

just one example however. What. are the general principles behind maintainability?

Work on maint.ainability models has been undert.aken by Boehm et al (Boehm, Brown,

Kaspar, Lipow. MacLeod & Merrit. HJ78). Boehm regards maintainability as having

three components: testability; modifiability and understandability. The two principal

ideas running through this and other work are system complexity and system mod

ularity (Harrison , Magel, Kluczng & DeKock 1982). Complexity may be regarded as

having two component.s (Curtis &. Sheppard 1979) : computational complexity and

psychological complexity. According to Curtis and Sheppard, computational complex

ity is a property of the algorithm which makes proof of correctness hard. Psychological

complexity is a property which makes human understanding difficult . However, these

two concepts have a substantial amount. in common.

Modularity is concerned wit.h t.he way in which a software system is decomposed into

smaller subproblems . The hypot.hesis is that. a programme is more maintainable if the

modules have minimum external coupling and ma.ximum internal cohesiveness (Con

stantine, Stevens &. Myel'S 1974).

While these ideas are important, they are not the complete picture. A large system

is continually evolving in time - how does a maintenance programmer retain an up-to

date mental model of t.he systeJII? 11011' should requirement, specification and design

information be represent.eel t.o ease maint.enance? The source codes represent the final

design step. and ideally the maint.enance st.aff should be acquiring the great majority

of the knowledge of a system and performing changes to it at a much higher level

of abstraction. Documentation produced during initial development may not be best

suited for this.

www.manaraa.com

18

4.2 What can be done now?

Section 4.1 has exposed some of the problems of producing maintainable systems, but

it is desirable to produce current software which is as good as possible using current

technology.

A key technique is to prepa.re for maintenance both during initial development and

during subsequent evolution. In ot.her words, preparation for maint.enance starts right

at the requirements capture stage. This implies full consistent documentation (with

QA audits), change control procedures, version and release management, regression

testing, internal standards and cost monitoring. It is difficult to see how any large

scale software project can succeed without strong management to implement these

techniques. In small scale developments (and small scale enhancements to a large sys

tem) it is very tempting to take short cuts. The use of technology where available (such

as data dictionaries, normal form dat.a represent.ation, use of met.rics as a project con

trol function) can make a slIhst.ant.ial ront.rihllt.ion. Modern design met.hods involving

data hiding and abstract.ion 5holiid also be 115('d .

Perry (Perry 1985) has identified five objectives in planning software maintenance:

1. a manager with clearly ident.ified responsibility for software maintenance should

be appointed;

2. objective for software maint.('nancc sholiid be clearly established;

3. the maint,enancc release mode method should be used;

4. the value added by software maint.enance should be evaluated;

5. the maintenance tasks should be subject to full QA and control procedures.

5 The status of software maintenance

There are indicat.ions that, sOft,wIII'C maint.enance, for so long the "Cinderella" of soft...

ware engineering, is on track t.o become a key issue in the 1990's. What are these

signs?

1. Software maintenance has been explicitly included in the ESPRIT II workplan

for IT research (ESPRlT is the name of the collaborative program of research

www.manaraa.com

19

funded by the European Economic Community).

2. There is an increasing number of conferences and workshops on software mainte

nance. The first slich event (Arnold, Schneidewind & Zvegintzov 1983) is claimed

to be a maintenance workshop held at the Naval Postgraduate School, Monterey,

Califoruia in 1983. The first UK Workshop was held at Durham University in

1987. There are now several major annual conferences.

3. In 1989, a new journal "Software Maintenance: Research and Practice" will be

launched, providing a forum for t.he publicat,ion of aca.demic and practitioners in

the field, Papers will be refereed.

4. The World's first research centre in software maintenance has been set up at the

University of Durham.

5, Ph.D, work on maintenance is start,ing to appear, and fina.l year courses on the

subject are becoming available in undergraduate Computer Science courses,

6. In the USA, the SoJ/wo.I'e Mam/wanee Assoczation (SMA) has been established;

it organises an annua.l conference and acts as a forum for practitioner topics. An

independent publical,ion t.hat, reports the activities of the SMA is the Software

MaintellaliCe News, published by N. Zvegintzov.

Most textbooks on soft.ware enginfering st.ill concentrate heavily on initial development.

Titles specifically concerned with Illa inl.enance include (Glass & Noiseux 1981) , (Martin

& McClure 1983), (McClure 1981), (Parikh & Zvegintzov 1983) and (Parikh 1982).

Probably the most cited 1V01'k in thr field is that by Lientz and Swanson (Lientz et al

1980).

6 Research topics in Software Maintenance

A theme running through sections :.l and 4 is I ,he need for technical development to

help us cope with existing installed soft.ware and with building new software that is

maintainable. There are many opportunities to be seized, once the prejudice is removed

that software maintenance is neit,her a challenging or interesting area in which to work.

Further information is provided in (Bennett, Cornelius, Munro & Robson 1988).

Some resea.rch topics are:

www.manaraa.com

20

1. Theory of maintenance. No adeqllate t.heoret.ical insights t.o software maintenance

exist. We need to develop models of the maintenance process, particularly to

address maintainability and methods.

2. metrics and cost modelling.

3. inverse engineering of installed soft.ware, including redocumentation where none

exists.

4. associat.ed quality assurance mechanisms and policies.

5. support environments for maintenance.

6. maintenance for 4GL programs.

There is considerable research in the lise of mathematical specifications (in notations

such as VDM or Z) t.o derive rigorollsly software systems. These techniques are starting

to be industrialised, yet the issue of Illilintenance and maintainability has not been

addressed.

Similarly, expert systems are now becoming widely used in industry and commerce. The

knowledge base is a valuable asset that will certainly require corrective and perfective

maintenance.

Software maintenance is a field which would seem to warrant an interdisciplinary ap

proach to research. Knowledge based techniques offer great potential in areas such as

program comprehension and understanding. So too does cognitive science. The inter

action of the maintenance support system wit.h the programmer needs careful attention

to the human-computer interface design.

Finally, we note that there is almost no up-to-date information on current software

maintenance pmctise. The survey by Lientz and Swanson was undertaken around ten

years ago Le. before the microcomputer, 4GL's, relational databases etc. The Centre

for Software Maintenance at Durham is planning to undertake a major survey in 1989

to address this.

Acknowledgements

The author acknowledges the substantial contributions made to this paper by other

members of the Centre for Software Maintenance, particularly Barry Cornelius, Mal

colm Munro and David Robson. The financial support of the UK Alvey Directorate

www.manaraa.com

21

(now the Information Engineering Directorate) and of British Telecom, K3 Software

Services and AGS Information Services is acknowledged.

Biographical notes

Keith H. Bennett was educat,ed at Manchest,er University, England , where he received

the degree of Ph.D. for research in the compiling system of the M U5 computer. He

then worked in industry for three years before taking up an appointment as Lecturer

in the then newly-formed Computer Science Department. at, the University of Keele.

He undertook research on distributed computer systems, with a particular emphasis

on reliable distributed fHestores.

In 1986 he was appointed to the first Chair of Computer Science in the School of

Engineering and Applied Science at the University of Durham, UK. Along with col

leagues Malcolm Munro, Barry Cornelius and David Robson, he formed the Centre

for Software Maint.enance at Easter 1987. He has acted as consultant to a number of

organisations and has lectured internationally on his work in both distributed systems

and software maintenance. He is a fellow of the British Computer Society, a Fellow of

the Institution of Electrical Engineers. and a Chartered Engineer.

www.manaraa.com

22

7 References

Arnold, R.S ., Schneidewind, N.F. and Zvegintzov, N., A Software Maintenance Work

shop, Commun. ACM, 27, (11), 1983

Arnold R. S., Tutorial: Software Restructuring , IEEEComputer Society Press, April

1986

Arango, G., Baxter, I., Freeman, P. and Pidgeon, C., TMM: Software Maintenance by

Transformation, IEEE Software, 3, (3), 1986 pp 27-39

Bazelmans R., Software Configuration Management, ACM Software Engineering Notes,

10, (5), 1985 pp 37-46

Babich W. A., Evolution of Configuration Management, Addison Wesley, 1986

Belady, L.A. and Lehman , M.M., A Model of Large Program Development , IBM Sys

tems Journal, 15, (3) , 1976 pp 225-252

Bennett K. H., Cornelius B. J ., Munro M. & Robson D. J., Software Maintenance: a

New Area for Research, University Computing, 10, (4), 1988 pp 184-188

Birsoff E. H., Henderson V. D. and Seigel S. G., Software Configuration Management,

Prentice Hall, 1980

Boehm, B.W., Brown, J .R., Kaspar, H .. Lipow, M., MacLeod, G.J. and Merritt, M.J .,

Characteristics of Software Quality , North-Holland Publishing Company, 1978

Boehm, B., The economics of software maintenance, Proc . Software Maintenance

Workshop, IEEE, 1983

Britcher, R.N. and Craig, J .J ., Using Modern Design Practices to Upgrade Aging Soft

ware, IEEE Software, 3, (3), 1986 pp 16-24

Brooks F. P., The mythIcal man-month, Addison Wesley, 1975

Brooks, R., Towards a Theory of the Comprehension of Computer Programs , Int. Jour

nal of Man-Machine Studies, 18, 1983 pp 543-554

Buckle, J.K., Software Configuration Management, MacMillan, 1982

www.manaraa.com

23

Bush, E., The Aulomatic flrslrurluriug of COfJOL, Proc . Conf. Software Maintenance,

IEEE, 1985 pp 35-41

Calliss F. W. & Cornelius B. J. , Softwal'c Maintenance : A Different View, Proc. 21st.

Annual Hawaii Int. Conf. on Syst.em Sciences, 1988 Vol. 2, pp 518-523

Chapin, N., Software Maintenance: A Different View, AFIPS Conf. Proc. 54, Na

tional Computer Conference, 1985 pp .509-5\3

Constantine, L.L., Sf,evens, W.P. and Myers, G.J., Structured Design, IBM Systems

Journal 2, 1974 pp 115-139

Curtis, B.and Sheppard, S.B. , fdcnlJjication and Validation of Quantitative Measures

of the Psychology Complexity of Software, Software Management Research, 1979

Ditri, A.E., Shaw , ,LC. and Atkins. W., Managing the EDP function , McGraw Hill,

1971

Dunsmore, H.E., Software Melnes: An O,'e11Jlftv of an Ellolving Methodology, Infor

mation Processing & Management, 198/1 pp 183-192

Fairley, R., Static AnalysIs and Dynamic Testing of Computer Software, IEEE Com

puter, 11, (4),1978 pp 14-23

Feldman, S.I. , Make - A progr'am jor maintaining computer programs, Software Practice

and Experience, 9, 1979

Foster, J.R. and Munro. Moo A [)ocllmtllfnlion Method Based on Cross Referencing,

Proc. Conf. on Soft,ware Maintenance, IEEE, 1987 pp 203-210

Gladden, G.R., Stop the Life Cycle, f IVanl 10 Get Off, ACM Software Engineering

Notes, 7, (2), 1982 pp 35-39

Glass, R.L., Noiseux, R.A ., Sojlware Mainlenance Guidebook, Prentice-Hall, 1981

Halstead M. H. , Elemenls of Sojlwll1'f Science, Elsevier North-Holland, 1977

Harrison, W., Magel, K., Klllczny, Roo tV. DeKock, A., Applying Software Complexity

Mterics to Pr'ogra7ll Mainfcnancf , II~ EE Computer, Vol. 1,5 September, 1982 pp 65-

79

www.manaraa.com

24

Harrison, W. and l'vlagel, K.I., A Complexity Measure Based 011 Nesting Level, ACM

SIGPLAN Not.ices. Vol. 16, no. :! March 1981 pp 63-74

Hartmann, J . & Robson, D. J., AlIPl'OlIches to Regression Testing, Centre for Software

Maintenance Report 88/7 , Universit.y of Durham 1988

Hoskyns Ltd., Implications of using modular programming, Hoskyns Systems Research,

1973

IEEE, Special i.ssue on Software R.euse, IEEE Trans. on Software Engineering, Vol.

SE-lO. nO .. 1 H)84

Leblang, D. ane! Chase, R., COlljigurnlloll Management for Large Scale Software De

velopment Efforts, Workshop on Soft.ware Engineering Environments for Programming

in the Large, Harwhichport, lvIassachussets. 1985

Lehman, M.M., Programs, Life Cycles, and Laws of Software evolution, Proc. IEEE,

yo1 68 (9), 1980 pp 1060-1076

Lehman, M.M. Program fl'O/lIluJII . Inforill. Pl'Ocessing Management, 20, (1-2), 1984

pp 19-36

Lientz, B., and Swanson, E.B., Software Maintenance Management, Addison-Wesley,

1980

Lientz, B.P., Swanson, E.B. and Tomkins, G.E., Characteristics of Application Software

Maintenance, CACM, Vol 21. (6), 1978 pp 466-471

LetoYsky, S., Cogni/il'£ PmCfS.~f.' i71 Program Comllrehension, Proc. Conf. Empirical

Studies of Programmers, flub. Ablex. Norword, New Jersey, 1986

LetoYsky, S. and Soloway. E .. Delocalised Plans and Program Comprehension, IEEE

Software, 3, (3), 1986 pp 41-49

McCabe, T.J., A complexity measure, IEEE Trans. Soft . Eng., SE-2, 1976

McCall, J.A., Berdon. IvI .A .. nne! Osborne, W.M., Software Maintenance Management,

Nat. Bureau St.andards. NBS Sp('rial Puhl. 500-12~). 1985

McClure, C.L., Manllging SoftwIIT'I' Development and Maintenance, New York Van

Nostrand, 1981

www.manaraa.com

25

McCracken, D.D. and Jackson. M.A .. Life Cycle Concepts Considered Ha17Tlful, ACM

Software Engineering Notes , 7. (2) , 1982 pp 29-32

Martin, J. and McCIUI'e, C., Software Maintenance: Th.e Problems and its Solutions,

Prentice-Hall, 1983

Martin, R.J. and Osborne, W.M., Gu idance of Software Maintenance, Nat. Bureau

Standards, NBS Special Pub!. 500-106, 1983

MillerJ. C., Structured R.etrofit: in J EEE Tutorial on Softwal'€ Maintenance, Computer

Soc. Press, 198:{ pp n5-2:W

Munro, M. and Calliss, F.W .. Notes of the First Software Maintenance Workshop,

Centre for Software Maintenance, Durham, England, 1987

Munro, M. and Robson , D.J., An Interactive Cross Reference Tool for use in Software

Maintenance, Proc. 20t.h Hawaii Int. Conf. on System Sciences, 1987 pp 64-70

Parikh, G., Techniques of Program and System Maintenance, Winthrop Publishers,

1982

Parikh, G. and Zvegintzov. N .. Tulorial on Software Maintenance, IEEE Computer

Society, 1983

Parikh, G., Handbook of Software Maintenance, Van Nost.rand Reinhold, 1986

Perry W. , A plan of action fOI' software maintenance, Data Management, 23 (3),1985

Robson D.J., Bennett. 1<. H. , Cornelius B. J . .\I. Munro M., Program Comprehension,

Centre for Soft.ware Maintenance Hi'pol't. 88/8, University of Durham, UK, 1988

Rochkind M. J., The Source Code CanlmlSystem. IEEE Trans. Software Engineering,

December 1975

Ryder, B.G., Constructing th.e Call Graph of a Program, IEEE Trans. on Software

Engineering, 5, (3), 1979 pp 216-225

Ryder, B.G., An Application of Static Program Analysis to Software Maintenance,

Proc. 20th Hawaii Int.. Conf. on System Sciences, 1987 pp 82-91

Schneidewind, N .F., The State of Software Maintenance, IEEE Transactions on Soft-

www.manaraa.com

26

ware Engineering, 13, (3), 1987 pp 30;1-310

Shneiderman, B. and Mayer, R., Syntactic/Semantic Interactions in Programming Be

haviottr, Int. Journal of Computer and Information Science , 8, (3), 1979 pp 219-238

Schneiderman, B., Designing the user interface: strategies for effective human computer

interaction, Addison Wesley, 1987

Sneed, H., Software Renewal: A Case Stttdy, IEEE Software, 1, (3), 1984 pp 56-63

Sneed, H. and Jandrasics, J ., Softwf!re Recycling, Proc. Conf. on Software Mainte

nance, IEEE, ItJ87 pp 82-90

Swanson, E.B., The Dimension oJ Maillirllf!lIcc . Prof. of Conference of Soft.ware En

gineering, IEE, 1976 pp 492-·197

Tichy, W.F ., RCS - a system Jor version control, Software-Practice and Experience,

15(7), 1985 pp 637-654

Ward M., Transforming a Program into a Specification, Centre for Software Maint.e

nance Report 88/1, UnivPl"sit.y or Durham 1988

Yau S. S. & Collofcllo J. S., Design Stnhifi/IJ MeasUT'CS for Software Maintenance, IEEE

Trans. Software Eng. SE- I I, Sepl.('mber J 985

Yau, S.8., and Collofello, J .S. , Some Stability Measttres for Software Maintenance,

IEEE Transactiolls on Software Engineering, 6, (6), 1979 pp 545-552

Zvegintzov, N. , Nanotrends, Datamation, 1983 pp 106-116

Zvegintzov N. (Ed.), GSA Launches the PWB, Software Maintenance News, Sept . 86

and others 1986

www.manaraa.com

2
INTEGRATED PROJECT SUPPORT ENVIRONMENTS:

GENERAL PRINCIPLES
and

ISSUES IN THE DEVELOPMENT OF HIGH INTEGRITY SYSTEMS

John A McDermid

Professor of Software Engineering
Departtnent of Computer Science, University of York

and
Director, York Software Engineering Limited

Part I: Introduction

There have been many advances in software development technology and in soft
ware engineering methods and tools since the introduction of computers in the late
1940's and early 1950's. Perhaps the most significant advance in software quality and
individual programmer productivity has arisen from the development, and evolution, of
the high level programming language. A significant effect on software development pro
ductivity, if not always quality, has also arisen from the dramatic increase in the perfor
mance/price ratio of computer hardware, particularly from the advent of the workstation.

These developments, particularly in hardware, have also (at least partially) con
tributed to increased expectations about what can be achieved with computers. These
expectations have led to the undertaking of many large, and all too often unsuccessful,
software development projects. Brooks in his article "No Silver Bullet" [Brooks1987]
articulates some of the problems underlying large software developments and casts
doubts on the possibility of general solutions to these problems. Brooks, and many other
authors, make it clear that the problem of managing the interactions and communication
within large development teams is one of the key difficulties facing the software industry.

Intellectual solutions are required to the problems of organising and managing
large team projects. However the issues of scale make it clear that such solutions will
only be practical if they are given adequate machine support. Unfortunately, until recently,
there was little in the way of support for team working. Integrated Project Support Envi
ronments (IPSEs) are intended to address these problems - the objective being to pro
vide a "complete" development facility for a project team. The primary means of doing this
is by providing an infrastructure and a set of tools to:

facilitate communication within the team;

support all (or most) of the technical and managerial activities in the software
development and maintenance processes; and

control access to data shared by members of the team in order to prevent inconsis
tent modification to the software under development.

In practice IPSEs often fall far short of these objectives, e.g. by supporting only a limited

27

www.manaraa.com

28

number of activities in the development process. We will expand on these basic require
ments for IPSEs, and illustrate the capability of current environments, later in this chap
ter.

A further trend in the defence sector, industry and commerce is to use computers
and software in increasingly large numbers of increasingly critical applications. Example
classes of critical applications include:

safety critical - where deaths or injury may be caused by computer or software
malfunction, eg fly by wire aircraft, and active suspension for cars;

military security critical - where loss or disclosure of sensitive information may be
highly damaging to the nation, eg a command and control system providing infor
mation on troop disposition to military commanders;

• enterprise critical - where malfunction of a computer leading to incorrect operation
or loss of information could bankrupt of otherwise critically damage some business
or enterprise, eg programmed trading systems on the stock market.

We will use the term high integrity as a generic name for the classes of applications illus
trated above to indicate that integrity (trustworthiness; freedom from impairment or cor
ruption) is required for the software in those applications.

As the above classes of application require high integrity software there are
demands on the integrity of the development processes, tools and the IPSE (if any) used
to produce the application programs. Consequently there are additional integrity require
ments on IPSEs intended for use in support of the development and maintenance of high
integrity applications, by comparison with JPSEs intended for less stringent applications.
We will address the basic requirements of IPSEs for developing high integrity systems
later in this chapter, and we will also present a fuller treatment of the concept of integrity.

We are now in a position to outline the aim and contents of the chapter. The aim is
to explicate the principles and concepts of IPSEs; to indicate how effective current IPSEs
are when judged against these principles; and to consider what additional requirements
are placed on IPSEs by the need to support the development of high integrity systems.
Due to limitations of space we can only briefly address these issues and we have to
gloss over a number of issues altogether, eg implementation strategies for IPSEs.

Part IT thus sets out the basic concepts and principles of IPSEs, focusing on the
term integration. It analyses five different forms, or types, of integration that (we believe)
are required in order that IPSEs can satisfy their basic objectives.

Part ill considers the evolution of computer based support tools from simple, sin
gle user, tools to the current concepts of IPSE architecture. It also reviews the capabili
ties of three, very different, current examples of JPSEs.

Part IV discusses the high integrity issues. The treatment IS 10 terms of likely
requirements for high integrity development - we must stress the term "likely" as this is
still an active area of research. The focus is on integrity in the IPSE itself.

Part V considers trends and presents some general conclusions.

www.manaraa.com

29

Part II: General Principles

The basic concepts underlying IPSEs were first expounded about a decade ago,
and the Stoneman document produced by John Buxton and Vic Stenning for the DoD
[DoD1980] is generally accepted as being the seminal reference on IPSEs, although it
was explicitly aimed at APSEs - Ada Programming Support Environments. We will dis
cuss the Stoneman view of IPSEs in more detail later in this chapter but, for now, we are
only concerned with two key aspects of the Stoneman ideas. First, there is a kernel of an
APSE (or IPSE) which is charged with storing the project data, managing the user inter
face, and managing other interfaces, eg to target computers in a host-target development.
Second, a set of tools are provided, exploiting the kernel facilities, to facilitate specific
development capabilities, eg compiling high level languages, or drawing structured analy
sis (SA) diagrams [DeMarco1978]. Thus the kernel provides generic capabilities which
are required by the range of tools to be supported by the environment.

It perhaps seems inappropriate to deal with principles and concepts in terms of
(possible) implementation structures. However the Stoneman ideas have influenced
most IPSE developments so many of the concepts used in descriptions of IPSEs reflect
these notions. Further many development projects have been concerned with producing
kernels rather than full IPSEs and many of the basic principles apply to the kernel, or
infrastructure, so it seems helpful to employ this architectural information in discussing
principles and concepts.

A key factor influencing the development of IPSEs has been the concept of integra
tion. Integration is a many-faceted concept. In our discussion we will be concerned with
integration in five different senses: between related tools; within a team; throughout the
stages of the development process; between technical development and management;
and in terms of user interaction with the tools in the IPSE. We shall refer to these as tool
integration; team integration; method integration; management integration; and interac
tion integration. These facets of integration are the main concern of section 11.1.

The set of tools provided by, or supported by, an IPSE reflects the development
strategy and methods selected for the project. Typically the tools will cover the use of
diagrammatic methods of software development, testing, documentation, compilation,
linking and loading. Less typically they will cover project planning, cost estimation, and
the use of formal methods. The issues of populating an IPSE with tools are addressed in
section 11.2.

n.I IPSE INFRASTRUCTURE AND INTEGRATION

We use the term infrastructure to refer to the kernel in Stoneman terminology. As
should be clear from the above this includes the database (or possible simply the set of
files) used to hold information shared by a number of tools, or which simply needs to be
preserved over some period of time. It also encompasses other basic tool support mecha
nisms, e.g. program invocation and communication primitives, and a user interface facility.
All these facilities are made available (accessible) through a public tools interface, or
PTI (see the figure on p24). This is essentially the tool implementors' interface to the
infrastructure facilities and is strongly analogous to the supervisor call interface in an
operating system such as UNIX. Some PTls have a narrower range of facilities than
those described above, for example they might not include a user interface component.

www.manaraa.com

30

However, for the purposes of our discussion, we assume this broad definition of the
scope of a PTI.

An open environment is one that does not have a fixed set of tools and which facil
itates the introduction of new tools via provision of a PTI. We identified five different
forms of integration above. With an open environment the infrastructure can contribute to
four aspects of integration:

interaction integration - through the user interface management component;
tool integration - through the PTI in general and the database in particular;

• management integration - through the database;
team integration - again through the database.

We discuss each topic at some length, but at an abstract level, as the details of the
approaches to each of these topics depends on the particular environment chosen. Techni
cal integration is covered when we discuss populating an IPSE in section 11.2.

n.l.l Interface Integration

One of the keys to making an IPSE easy to use is to achieve consistent interac
tion styles with all the tools in the environment. Provision of a consistent style makes it
easier to learn to use new tools and to move between tools without making mistakes.
These characteristics contribute, in turn, to human productivity in the use of the IPSE.
Clearly there is a limit to the degree of consistency that can be achieved between tools
as they will by definition have different functionality, however common commands should
be invoked in the same way and the style (or styles) of interaction, e.g. via pull-down
menus, should be consistent unless there are very good reasons to diverge from a stan
dard approach. This idea can perhaps be clarified by considering two commonly used sys
tems.

One of the biggest difficulties about using UNIX is the very great divergence in
interface styles (and the unhelpful interface styles) of its many tools. By way of contrast,
the Macintosh is probably the epitome of interface consistency. In the case of the Macin
tosh consistency is achieved by publishing guidelines on interface design and, in general,
developers of programs for the Macintosh follow these guidelines quite faithfully. Thus
there is a fairly common experience that it is possible to use a new Macintosh program -
at least at an elementary level - simply by running it, without having to read the docu
mentation. Note that some of this ease of learning relates to the quality of the interface,
not just the consistency between tools.

Most PTI definitions also include an OTI - an Open Tool Interface - which is a
means for invoking tools which run on the underlying operating system. For the reasons
outlined above the OTI clearly won't give interface consistency unless the tools invoked
happen to have been developed to use the same interface style. Whilst this may seem a
rather trivial point it is significant as the OTI is often sold as a "cheap route to integra
tion" yet, in reality, it can only be of limited utility. At least from the interface point of
view a set of tools brought in to an IPSE via an OT! will be no more integrated than they
are in the host operating system. In addition, OTIs only provide limited help in respect of
the other facets of integration - they must be regarded as a form of "fool's gold" at least
from the point of view of providing a simple means of integration.

www.manaraa.com

31

There is a further important aspect of interface integration, which also relates to
the tool functionality. This concerns the ability to "do anything from anywhere", ie the
ability, whilst carrying out one function, to invoke another function and transferring some
data between the two functions in the process. A concrete example might be the ability to
invoke a mail program from the context of a compiler error message display to send an
example of a program which exposes a "bug" in the compiler to the compiler writer. Again
this ease of moving between programs, carrying some context, increases productivity and
reduces opportunities for error.

There are essentially two ways in which the current weaknesses in IPSE inter
face integration can be reduced or alleviated. One is via the improvement of the interface
support mechanisms provided by the operating system. Note that this is then available
via the OT! as well as the PTI. The second is via provision of a user interface manage
ment system (UIMS) within the infrastructure. Each has its advantages and disadvan
tages. We will summarise the advantages and disadvantages below, but fIrst we consid
er the trends in interface facilities provided by operating systems - in particular UNIX as
this is the most widely used operating system on workstations supporting bit-mapped
graphic displays, and these are now being widely used in support of software engineering.

The situation with UNIX interfaces is evolving quite rapidly as it is becoming the
prevalent operating system on workstations supporting bit-mapped displays, and a key
issue for such an OS is the management of sub-parts of the complete display. These sub
parts are usually known as windows, and each window can be read from or written to
"simultaneously". TypiCally the operating system will support a process connected to
each window, and a windowing system to support management of the screen, e.g. for
dealing with windows when they overlap. There are windowing standards emerging, e.g.
X-windows, and although these don't define the "look and feel" (i.e. interaction style) of
the interfaces they do standardise on basic screen manipulations. In addition individual
computer manufacturers, e.g. SUN with OpenLook, are defIning their own interaction
styles. Also there are groupings of computer manufacturers defIning particular "flavours"
of UNIX and associated utilities, including an interface manager which defInes a particular
"look and feel". For instance OSF, the Open Software Foundation, has defIned MOTIF
which is layered on top of X-windows and provides a Macintosh-like "look and feel". The
trend towards definition of these standard interfaces should facilitate the provision of
well-integrated toolsets on UNIX.

A primary advantage of relying on the operating system for interface integration is
that it should enable consistency to be provided between tools developed on the PTI and
those simply invoked through the OT!. On the other hand the need to provide generality
in an operating system may limit interface functionality, and it may be rather hard to pro
vide the "do anything from anywhere" capability without being restrictive about the sort
of data that can be passed between tools.

For tools developed directly using the PTI then the situation seems potentially
much better, as the IPSE designer can build a UIMS with facilities much more closely
geared to software development. The Alvey research programme set up in the UK in the
mid 1980's, and funded in part by the UK government, gave considerable emphasis to
IPSEs. The Alvey funded ECLIPSE project defined a user interface management compo
nent for the IPSE tools [England 1987]. This gives a set of primitives whiCh enable, for
example, tools supporting graphically based methods such as Structured Analysis to be

www.manaraa.com

32

built quickly and in a consistent way. The Alvey ASPECf project has also worked on an
interface component, known as the Presenter [Took1986]. Presenter has many technical
strengths, including the ability to pass on to the user the ability to interactively tailor the
interaction style to individual preference. However this level of capability is not yet avail
able in commercial products.

The big disadvantage of a UIMS approach is that integration between the on and
PTI is not possible. Additionally it may not be possible to provide very much "software
engineering oriented" functionality through the UIMS as an IPSE is also a very general
purpose system.

Interface integration is often neglected, and most IPSEs are rather weak from this
point of view. However there are encouraging signs that operating system and IPSE
designers are taking this facet of their work more seriously so IPSEs should begin to
improve, in this respect. It is also reasonable to expect IPSEs to change from having
fixed functionality interfaces to providing facilities for building and customising interfaces.

11.1.2 Tool Integration and PTIs

From a technical point of view the main facilities, other than user interfaces, pro
vided by the infrastructure of an IPSE are for tool integration through the database and
via tool to tool communication (or invocation). In general the facilities are unremarkable,
being largely extensions and generalisations of standard database and operating system
facilities. Many IPSEs use entity-relationship models, extended with the ability to store
large, unstructured, objects, e.g. text files. It is also common to give database support for
versions and variants of software in the database, thus supplanting mechanisms in tools
such as sees (see section III. 1.2).

In general, one of the most significant aspects of the infrastructure of an IPSE is
the database management system. This is true from the point of view of the implementa
tion of the IPSE, but much more importantly it is true in terms of the potential for integra
tion. Information is necessary in order to achieve project control, and the database, if suit
ably designed, can contain most of the essential information about a project, the relation
ships between the sources, specifications and other data shared between the tools, and
so on. A practical example of this would be storing relationships between module specifi
cations, programs, test specifications and test results. This gives the basis for integrat
ing tools concerned with specification analysis and testing to calculate, for example, test
coverage metrics. Further it would then be possible to constrain the testing process to
ensure that certain levels of coverage were achieved. Thus the database forms a
(logically) centralised repository for all the key project information, and provides the
basis for integration and control.

The extensions of the tool communication and invocation facilities can be relative
ly simple additions to the operating system facilities. Often the primary change is to
record (certain aspects of) the behaviour, or use, of the tools in the IPSE database. This
might be to capture information for automatically producing "make files" ie files which
describe how to build particular items of software or documentation (see section III.1.2),
or to provide an audit trail of how certain items were constructed.

However these facilities really provide tool "aggregation" not integration. Unless

www.manaraa.com

33

the tools are designed together from the point of view of their technical characteristics,
internal data structures, and interaction styles they will not be truly integrated. It is quite
common to build "shells" around particular tools in order to include them in an environ
ment, and to improve their degree of "integration" with the other tools, e.g. by modifying
they way they interact with the user, but usually such approaches are of limited success
due to fundamental limitations imposed by the decisions made by the tool designers. The
author has observed such problems trying to put a graphical interface on a textually
based theorem proving system, and similar interfacing problems have been cited by oth
ers in trying to extend UNIX tools [Thimbleby19861.

There is considerable interest in developing PTIs, much of it aimed at providing a
good basis for tool integration (see section V.1 for a brief overview of some of the current
PTI defmitions). Indeed production of a PTI often seems to be the "holy grail" of the
IPSE/infrastructure developer, rather than development of an effective working environ
ment. It is clear that PTIs are potentially generally, and genuinely, useful eg for providing
tool portability and as a basis for integration. However it should be remembered that they
are part of one possible architectural solution for IPSE development - not the only one -
and our main aim is to provide effective IPSEs not PTls.

Following this general observation we should stress two points. First, PTIs give
the opportunity for achieving tool integration - they don't guarantee it. Second, there are
many who believe that standardisation on PTI definitions is premature. There is almost
no experience of using IPSEs based on PTIs (indeed there is relatively little experience
of using IPSEs at all) and it is far from clear that we yet know what are necessary and
sufficient facilities to provide in such an interface. In the absence of such information stan
dardisation is a risky process. Thus PTIs should be an important development in IPSE
technology - but this does not mean that the current batch of interface definitions will
prove effective and long-lasting (see part V for a discussion on this point).

11.1.3 Management Integration

In an IPSE, management integration is achieved primarily through linking the man
agement and technical information in the database. For example the specifications of
modules of software should be linked, through a work breakdown structure, to activity
descriptions and perhaps estimates of cost and duration for the activities. This is a fur
ther important facet of the use of the database to link various activities and data. In prac
tice a key to management integration will be the establishment of project plans in the
database and the linking of technical information to the activity descriptions.

It is now becoming comparatively common to use (parametric) software cost esti
mation models, for estimating the cost and duration of software projects. The term para
metric refers to parameters given to the models to define properties, or attributes, of the
software development, e.g. how difficult the job is thought to be, how experienced the
development team is, etc. One of the difficulties of applying estimation models such as
COCOMO which are based on historical cost figures is in obtaining the data with which
to calibrate the models [Boehm19811, including providing the model parameters. IPSEs
offer the opportunity to collect this historical cost data, and offer a relatively stable basis
for development which should improve the reliability of the estimates. Such data collec
tion can be achieved by placing monitoring code in the IPSE infrastructure, although it is
not always possible to make the data collection entirely unobtrusive.

www.manaraa.com

34

Information collected in an IPSE can also be used as the basis of pragmatic man
agement decisions. For example, modules which have atypically high error rates in test
ing may have been badly designed (or may just be very complex and error prone).
Conversely modules with very low error rates may not have been properly tested (or may
just be very simple). However measurement can provide indications of possible trouble
spots which, coupled with intelligent assessment of the sources of the anomalous data,
can be an aid to focusing management attention on critical areas of a project. Both the cal
ibration and pragmatic aspects of measurement in IPSEs are discussed by Kitchenham
and McDermid [KitchenhamI986].

Perhaps the key pragmatic point to make about management and IPSEs is that
IPSEs can, in principle, greatly facilitate project management. In essence this arises in
two related ways: first an IPSE helps to make development information visible to the pro
ject manager; second it ensures that the information the manager receives relates to the
actual development status, not the imaginings or wishes of the development staff. How
ever, apart from the example cited in section III.2.3 there is little evidence of this benefit
being realised in practice.

Finally the use of an IPSE makes it possible for management suppon to become
active not passive. For example, if deliverables are not produced on time, a "Daemon"
(periodically executed monitor process) programmed to check on progress can send a
message to the project manager, alening him to the situation. This is of benefit in a num
ber of ways including the fact that it reduces the need for a manager to delve in to the
mass of detailed technical information held in an IPSE. However at present few IPSEs
are capable of operating in an active manner.

11.1.4 Team Integration

There are two primary facets of team integration: control over sharing of data
(program source, etc.) between members of the team, and communication within the
team. Both facets of team integration are imponant, but most emphasis is usually put on
controlled sharing as this is perhaps the most difficult issue, and because it can most
readily be supponed by the infrastructure (given our current stage of understanding of
infrastructure design and implementation). In this section we use the term "data item" to
refer to any of a wide class of objects which may be stored by the IPSE infrastructure.

A major aim in project management is to ensure that work is allocated (based on
a work breakdown structure) such that there is as clean and clear as possible a division
of work between individual members of a project team. Pragmatically this means that
specific individuals will have complete responsibility for developing some specification or
item of code. In general, therefore, in a well-run (ideal) project there will be no need for
individual software engineers to have modify access to the same data items held by the
infrastructure (eg programs or specifications). However they will need to share data, eg
so that one software engineer can develop his module, using a module produced by anoth
er member of the team. Thus it is still necessary to provide a limited form of sharing - and
such facilities can be provided by an IPSE infrastructure.

Two of the requirements on the IPSE infrastructure are panicularly relevant to
team integration. First, it is necessary to ensure that no item which is depended upon by
one member of the team, although it was produced by another team member, can be delet-

www.manaraa.com

35

ed whilst it is still needed (depended upon). Second, it is necessary to ensure that the
creator of an item has control over which versions of it are used by others in the team so
that, for example, versions of modules are not used until they have been adequately test
ed by the originator. There are several ways of implementing mechanisms to support this
requirement. Perhaps the simplest uses private and shared domains, where a domain is
simply a set of files or a part of the IPSE database which is disjoint from any other. In
addition this solution uses a fortn of "handshake protocol" for moving items between pri
vate and shared domains.

In such an approach each member of the team would have their own private
domain which contains all the data items which he or she is developing. Private means
that only the originator of the infortnation has the capability to read and write the data
items. When one item is believed to be in a state suitable for use by other members of
the team it can be moved ("promoted") into the shared domain. The data item can now be
used by other members of the team. This stops untried versions of data items being used,
but doesn't stop them being deleted whilst being used. This problem can be addressed by
requiring users of shared items to "reserve" the item before use, and then to "release" it
~~~~~~~~~~~~~~~~~~ 
shared domain once all users of the item have released it. This satisfies the basic require
ments identified above. 

In practice, however, more complex requirements may need to be satisfied. For 
example one member of the team may have multiple roles, eg module developer and mod
ule specifier, and it may be appropriate for him to have one domain for each role. Similarly 
it may be appropriate to have more than one shared domain, perhaps relating to a subsys
tem of the system under construction or a stage of the development process. These facili
ties cope well with the straightforward development of a system which goes through mul
tiple versions - the ideal case outlined above - but they do not deal with the development 
of multiple parallel variants of a system. 

For many projects it is necessary to work on multiple variants of the system at 
once. In other words there are similar, but not identical, sets of modules making up differ
ent variants of a system. Reasons for this might be implementation of the system on dif
ferent machines, or carrying out "bug-fixing" on released software whilst carrying on 
development (adding new features) to the system. In these cases it might be necessary 
for multiple individuals to have write access to the same data item (albeit different ver
sions thereof). Normally this is handled by making copies of the data item, but this leads 
to problems when the variants of the item need to be merged, eg in retrofitting "bug fixes" 
from the released version of the system to the development system. In general the 
domain concept can be used for controlled access, but there is relatively little automated 
aid for merging (this is not surprising as it depends on the semantics of the changes). 

Viewed more generally the control aspects of the requirements for team integra
tion can be thought of as those of version and configuration mangement, plus the issues 
of sharing illustrated above. In many instances these control issues are also extended to 
issues such as release management, but treatment of such issues is outside the scope of 
this chapter. We note however that one can imagine a "release domain" into which the 
complete software system is deposited, once it is deemed ready for release. These broad
er access control and release management issues are also important where more than 
one project shares common data items, eg by re-using existing modules or libraries. 



www.manaraa.com

36 

The communication aspect of team integration is often overlooked. This is perhaps 
because managers worry about the tangible problems which can be caused by accidental
ly deleting source, or integrating the wrong set of configuration units, but don't see the 
costs of poor communication between team members as these may be much more subtle. 
Indeed problems of poor communications may simply manifest themselves as morale 
problems, rather than in any overt technical sense. At the simplest level electronic mail is 
a necessary form of machine supported communication for team integration. Elementary 
mail services are helpful, but more elaborate systems are likely to be of more use. 

There is value in setting up mail systems with group distribution and mailing lists 
so that, for example, a programmer can communicate easily with everyone else working 
on his subsystem, or can ask a group of experts in database design how to solve some 
particular data structuring problem. Thus setting up distribution lists relevant to the pro
ject as a whole, can aid communication. However this can be taken further in two ways. 

First, one can get the infrastructure to originate mail messages. For example, in 
the case of the shared domains, it would be possible for the infrastructure to send a mail 
message to all users of a particular data item if a later version is placed into the shared 
domain. This reduces the likelihood of team members unwittingly using an out of date 
module or specification. 

Second, there is the whole area of computer supported cooperative work, or 
CSCW. In the paper world (and on whiteboards) software engineers interact in develop
ing designs, carrying out reviews, etc. In many ways the machine support of an IPSE can 
be seen as stultifying to the normal social processes involved in less automated software 
development. Clearly an ideal IPSE would provide for this interactive and cooperative 
working by embracing and supporting the ideas of CSCW. Indeed one could see this as a 
primary objective for IPSEs - to support all the cooperative tasks in software develop
ment except those which rely on group psychology, such as reviews. This certainly is 
beyond the state of the art in IPSE design, and it is perhaps over-optimistic to believe 
that such functionality can be provided in the near future, although it remains a valid long
term goal. 

n.I.S Commentary 

We have set out some basic IPSE integration requirements, based on the premise 
that the requirements can be implemented by an appropriate infrastructure. This is true in 
part - but to a varying degree for the different requirements. For example controlled shar
ing is almost entirely an infrastructure matter, but interface integration is also heavily 
dependent on tools. Specifically the IPSE can provide the means for integration - but it 
cannot enforce it if the individual tool designers choose to use the facilities available to 
them in incompatible ways. Also some of the functions which we have ascribed to the 
infrastructure, eg configuration management, can also be achieved by tools. 

Thus the infrastructure is very important in achieving integration, and this tends to 
lead to IPSE developers focusing on infrastructure issues. However, perhaps one of the 
worse failings of many current IPSE projects is that they have developed sophisticated 
infrastructures without the supporting tools - they have provided the means to the end, 
but not the end itself. It is thus appropriate now to consider the population of an IPSE 
infrastructure with tools. 



www.manaraa.com

37 

ll.2 POPULATING AN IPSE 

The basic aim in populating an IPSE (infrastructure) is to provide support for all 
the major (automatable) activities in software development. Thus we require one or a 
number of tools to support each major technical or managerial activity, plus query (and 
other) mechanisms for accessing the data held in the IPSE infrastructure database. Clear
ly all these tools and related facilities have to be suitably integrated. Populating an IPSE 
is not so simple, in practice, eg due to the potential overlap between tools for essentially 
different tasks. Thus any attempt to expand on the above description runs the risk of turn
ing into the production of a "shopping list" which gives no real insight into the underlying 
technical and managerial issues. So, as an alternative, we consider some of the basic 
issues in method integration in support of technical development. In other words we are 
dealing with the fifth aspect of integration identified above. This aspect of integration is 
treated separately because it is primarily a methodological and tool issue, rather than an 
infrastructure issue. 

In principle it would be possible to talk about the general requirements for such 
integrated toolsets but, in order to make the discussion more concrete, we refer to a num
ber of extant "coherent method and tool sets". The examples cited below are somewhat 
incomplete, but they are typical of what can be (has been) achieved with current meth
ods. Many developers of methods and method sets (often incorrectly referred to as 
methodologies) claim to have "complete" methods in the sense that they cover the whole 
software life cycle. These claims are not, in general, well founded and most method sets 
are limited in life cycle coverage, scope, or both. The shortcomings of a method set can 
usually be discerned quickly by considering how the set would deal with the latest project 
with which you found difficulties! The limitations are usually that there are stages of the 
life cycle, or important issues such as interface design, which the method doesn't 
address - not that the method does badly what it is intended to do. In other words most 
of the limitations arise from omissions, rather than from flaws in the techniques used. 

ll.2.1 Basic Requirements for Method Integration 

The basic requirement for method integration is that the set of methods should be 
coherent, and non-conflicting. Informally we would probably say that they are complemen
tary. This means that there should be techniques and notations for dealing with all activi
ties in the software development (and maintenance) process, including management 
issues, and that there should be no conflicting techniques or notations. This does not 
mean that there should never be more than one way of carrying out some activity. Instead 
when there are multiple possibilities it should always be clear (by considering the charac
teristics of the system under development) which technique to choose, and the complete 
set of methods should still be complementary no matter which option is adopted. A practi
cal example might be the availability of more than one technique for database design. 

The requirement for the methods to be complementary sounds obvious and unar
guable, but it is surprising how few method sets meet this basic criterion. Worse, howev
er, there is a much more subtle test of method integration, which is even less often satis
fied. This relates to the "conceptual integrity" of the methods employed. In order to 
achieve conceptual integrity the methods used should be based on a compatible set of 
concepts, or perhaps more importantly a compatible system model. This, rather obscure, 
definition can be clarified by considering separately the conceptual integrity of process 



www.manaraa.com

38 

and product, and by giving examples and counter-examples. We will consider coherence 
of the product fIrst. 

Consider two different classes of method for describing a system, one class based 
on asynchronous processes with a flat process structure (i.e. no processes have sub-pro
cesses), and the other class based on a hierarchy of synchronous processes. By syn
chronous we mean that data can be thought of as leaving the sender and arriving at the 
recipient at the same time, ie the sender and receiver are synchronised (executing togeth
er) at the time of communication. This means that if the sender is not ready to produce 
some data then the receiver has to wait, and vice versa. This may be thought of as a fonn 
of "procedure call" between two processes, such as is exhibited by the Ada rendezvous 
mechanism. With asynchronous communication the sender and receiver processes are 
more loosely coupled, and one can continue operating without waiting for the other. The 
most obvious example of asynchrony is communication via message passing although it 
is also possible to communicate asynchronously using shared store. 

We could use two methods from the same class, at different stages of the life 
cycle, to describe the same system. For example an asynchronous model of the system 
might be used at requirements and architecture, and it should be relatively easy to 
demonstrate that the architecture corresponded to the requirements (by comparison with 
conceptually different methods). However it is also possible to use conceptually different 
methods at different stages, if they can be related in an appropriate way. For example it 
would be quite reasonable to use "conventional" methods of functional decomposition to 
design and develop the individual processes of a system, once these processes had been 
identifIed in the architecture. The signifIcant distinction between these two cases is the 
need to verify consistency between the whole of one description and part of another, as 
opposed to the consistency of the whole of two descriptions. 

It would be hard to use methods based on divergent views of process structure 
and communication, eg synchronous and asynchronous, to describe a system at two adja
cent levels of abstraction where it is necessary to verify the consistency of the two com
plete descriptions. That is not to say that they couldn't be used to describe the same sys
tem, rather that it would be diffIcult to do so and that it is likely that there would always 
be doubts about the equivalence of specifIcations produced using the two notations. Thus, 
for example, Hoare's Communicating Sequential Processes [HoareI985] which is based 
on a synchronous model of communication and MASCOT would not fIt together well. By 
contrast the CORE method for requirements specifIcation [Mullery1979], and the MAS
COT design notation [Jackson1986] are based on models of asynchronous processes, are 
coherent, and have been successfully used together. 

Similarly methods need to have compatible view of the process. Thus a method 
based on the notion of stepwise refInement, and another which took a monolithic view of 
specifIcations, e.g. viewing them as contracts, would be incompatible, especially when it 
came to managing changes. This can perhaps best be seen by considering the verifIcation 
processes. With stepwise refInement verification may be carried out incrementally on 
what.are (in some senses) incomplete and inconsistent specifIcations. This would be dif
fIcult to reconcile with a method that insisted on complete and internally consistent speci
fIcations before carrying out a "big bang" verifIcation. Again this is not to say that such 
techniques could not be used in conjunction - merely that the conjunction of the tech
niques could cause both technical and management difflculties. Pragmatically the process 



www.manaraa.com

39 

compatibility problems are probably the easiest to resolve, unless key facets of the pro
cess are rigidly implemented in method support tools (or the IPSE infrastructure). 

Perhaps more significantly than either of these two points is their combination. It 
must be possible to verify consistency between the descriptions of a system produced by 
two methods. Thus they must have compatible semantics and a set of rules for checking 
the consistency of descriptions written in the two notations. Thus there is intellectual 
work to be done, often of a subtle nature, when trying to link two methods, and possibly 
software development work in terms of the production of further support tools (for the 
additional verification activities). 

It must be pointed out that method coherence does not simply mean compatible 
and consistent notations (this is another popular misconception). Further it does not 
even mean consistently using formal (mathematical) or structured (graphical) notations. 
For example the view of systems taken by structured methods such as MASCOT and 
formal methods such as CCS [Milner1980] are essentially asynchronous concurrency, 
and it would be quite possible to use them in conjunction. Indeed it is now becoming quite 
popular to "underpin" structured methods with formal descriptions to try to gain the bene
fits of both styles of development method, and to try to obtain the benefits of both classes 
of technique. Current work includes investigation of links between SSADM and Z. 

n.2.2 Examples of Method Integration 

One good example of a coherent method set and environment developed for use on 
a real project, is Safra [Cronshaw1986]. Safra was developed by British Aerospace 
(BAe) for the Experimental Aircraft Programme (EAP). A flyable demonstrator fighter 
aircraft was produced in a very short time and the software development timescales were 
compressed to about one third of those normally achieved in the aerospace industry (i.e. 
they were brought down to about two and a half years). Perhaps un surprisingly very high 
gains in productivity, by comparison with earlier projects, were observed. 

Safra was developed to support the complete software development process 
including requirements analysis, design, production and testing of the software in the 
EAP. The method was based on CORE and MASCOT and the underlying environment 
was Perspective produced by Systems Designers (now SD-Scicon). Although some 
problems with the method and environment were cited by BAe they acknowledge that it 
would not have been possible to carry out the development in the time without the 
method and environment support. More information on this project is given in section 
ill.2.3 and in the above reference. 

Examples of other possible method sets are given in a study of Ada life-cycles by 
McDermid and Ripken [McDermid1984]. One of these examples is backed up with exper
imental evidence of its use and the book gives some indication of the characteristics 
(expected) of complete method sets. There is a 101 of dogmatism surrounding the choice 
of methods and method sets, and many proponents of particular methods claim 
"universality" for their approach. However there are few, if any, universally applicable 
methods and in widely applicable methods generality is often achieved at the expense of 
"power" or effectiveness. In many cases, eg compiler design, it is more helpful to use an 
application specific method as the power of the method in guiding the software develop
ment will far outweigh any disadvantages accming from lack of generality. 



www.manaraa.com

40 

In practice, selecting a method sets for a project is a matter for some judgement. 
We discuss this issue in detail elsewhere [McDermid1989a] but the basic principle is to 
identify the critical factors relating to a project - reliability, performance, security, algo
rithmic complexity, data(base) complexity etc. and to select methods which deal well 
with the most critical factors. In other words methods should be chosen to suit the techni
cal characteristics of the project. It is then usually necessary to "adapt" the chosen meth
ods, e.g. by borrowing techniques from other methods, to deal with other aspects of the 
system. Thus it is usually necessary to design or develop a method set for a particular 
application. 

As might be expected it is also necessary to design the development process, ie 
one should consider the process required for developing the system under consideration 
in order to provide an effective way of managing the risks attendant to the development. 
This is an important topic, but outside the scope of our paper; the interested reader is 
referred to [McDermid1990]. for an introduction to the concepts of software process 
design. This need for process design is one of the strongest arguments in favour of having 
open environments which can be tailored to support different tools and techniques. Indeed 
this realisation has fostered a lot of· research on "software process models" - indeed 
there is now an annual workshop on the subject. We will briefly return to this point in 
section V although it should perhaps be noted that excessive flexibility in process selec
tion or design can result in management problems. 

11.2.3 Constraints on Establishing a Coherent Method Set 

As indicated above space does not permit a full account of the issues in establish
ing a coherent method set - but it is worthwhile making some observations on con
straints especially as some of them relate to issues of integration and the design of the 
IPSE infrastructure. We consider two "managerial" constraints, two technical constraints 
and one technico-managerial issue. 

In general one can't simply select the best methods for a project without consider
ing the available personnel, and their training. Training is expensive and, the smaller the 
project, the greater the cost of training as a proportion of the overall budget. In many cas
es it will be better to use a non-ideal, but satisfactory and familiar, method set than an 
ideal but unfamiliar method set In practice it is probably a good idea for an organisation 
to have a number of "standard" method sets available suited to its range of applications. 

In some cases the developers may have no choice over the method set - this 
might be dictated by the customer. For example this might happen in a safety critical 
application where some particular standard or set of tools is mandated by the procure
ment agency. In this case it is only to be hoped that the imposed method has the desired 
characteristics. 

It is not very satisfactory to be able to link methods if one can't link the support 
tools. Thus one may be constrained to use methods whose support tools can be run on 
the same PTI or, more strongly, have been designed so that they make available the nec
essary information to achieve integration. This indicates that, for example, it would be 
helpful to do work on canonical representations of different classes of specifications, eg 
graphcal notations [Black 1987], and that these representations should be supported by 
the IPSE infrastructure. 



www.manaraa.com

41 

Methods used in development also should be used (and usable) in maintenance. 
Thus the method set chosen for the development should also take into account the differ
ent technical activities undertaken in maintenance. Thus the chosen method set may have 
to be a compromise between the "ideal" for development and the "ideal" for maintenance. 
Again training is an issue because maintenance staff cannot be expected to be familiar 
with an enormous panoply of methods. 

In some very risky projects it is only possible to decide what methods to use as 
the project proceeds and the range of issues to be addressed becomes clear. This sug
gests that the IPSE should be able to support the incremental definition of the tool set, 
and perhaps modifications to the tool set, as the project proceeds. This has ramifications 
for the way in which the data and database schema is managed. Indeed it might imply 
that we need to be able to keep the database schema and tool set under version control -
which causes some interesting technical problems! 

ll.3 Commentary 

Although we have presented an extensive discussion of IPSE requirements we 
have still only scratched the surface of the subject. For example it is possible to make the 
infrastructure "active", eg to include daemon processes which volunteer information to 
the users, to include inference mechanisms, and so on. Thus the reader should view the 
discussion as being representative of IPSE requirements, but far from complete. 

However we have stressed requirements oriented towards integration. This is 
appropriate as it is the integration which is the main extra capability offered by IPSEs 
over and above what one gains by running a set of tools on an operating system. Hence 
we believe that we have focussed on the main IPSE issue. To put it another way if IPSEs 
don't facilitate integration to a significant degree then they are likely to prove nugatory. 

It is also worth commenting more generally about IPSE requirements. The require
ments are potentially immensely complex - in principle the requirements are to support 
all possible development processes for all possible software development projects in a 
cost-effective, reliable, etc. way! Clearly providing a detailed exposition of even a repre
sentative subset of such requirements would be rather time-consuming, and it is 
(arguably) of little value as the main difficulties of IPSE design and development seem to 
be in dealing with the central issues such as integration rather than the minutiae of partic
ular development methods and processes. 

The above perhaps suggests that work on requirements is not worthwhile. This is 
not so and some interesting and valuable work has been done on IPSE requirements. The 
difficulty is in identifying key requirements without being swamped in the detail of particu
lar development methods or projects. Perhaps the most pertinent work on IPSE require
ments is by a group of major European Aerospace companies in a project known as 
AIMS. The intention here is to specify requirements for, and then build, an IPSE support
ing development of avionics software by the Aerospace companies and their subcontrac
tors in the context of multi-national collaborative projects. The work is particularly inter
esting as it is one of the few really detailed studies of IPSE requirements by users of 
IPSEs, rather than would-be IPSE purveyors. 



www.manaraa.com

42 

Part III: Current IPSEs 

We have given an overview of the basic requirements for IPSEs, focusing on the 
general issue of integration. Realisation that these are appropriate requirements (if 
indeed history shows that they are appropriate) has not come about quickly, and has cer
tainly not come about purely by intensive study of the way in which software is, or should 
be developed. Instead the requirements have effectively evolved and emerged from expe
rience with available tools and IPSEs, and assessments of the shortcomings of current 
tools and environments. 

Consequently it is useful to discllss both the historical evolution of software 
development tools, and to give an overview of some current IPSEs. This discussion 
should help clarify and elucidate the requirements presented earlier, and indicate the 
shortcomings which IPSEs are intended to overcome. It should also make clear what are 
the capabilities of current tools and environments and hopefully enable the reader to see 
to what extent available tools and IPSEs can support their development activities. 

We start by discussing IPSEs from a historical perspective. The aim is to give a 
flavour of the major developments that have occurred in support tools and IPSEs, rather 
than to give an accurate historical account of the development of the subject, so we make 
extensive use of examples. This is followed by a relatively detailed account of the capa
bilities of three IPSEs which are currently commercially available, or which are in use in 
the industry. We conclude with a discussion of some current work on PTIs. 

flU HISTORICAL PERSPECTIVE 

The following overview represents a "rational reconstruction" of the evolution of 
IPSEs. It is not completely accurate chronologically, but it reflects the logical progression 
of the ideas of environments for programming and project support. We should perhaps 
stress here the emphasis only shifted from programming support to project support in the 
mid 1980s, so many of the issues discussed in part II are quite new ideas. 

The major value of the historical perspective is that it enables us to identify most 
of the significant technical threads which underly the design and development of current 
IPSEs. Taken in conjunction with the survey of current IPSEs this enables us to see, to 
some extent, what are the primary research issues. 

We consider five stages in this rational reconstruction: 

• Individual Tools 

• Groups of Tools 

• Early Integrated Environments 

• The Influence of Ada 

• CASE Tools 

It should be clear, however, that the early stages aren't "finished" and that there are still 
important issues to be addressed in the design and development of individual tools, eg to 
support the use of formal methods. 

Arguably work on individual programming tools is (almost) as old as computers 



www.manaraa.com

43 

themselves although the perception of what tools are required has changed almost 
beyond recognition. Work in the 1950s was primarily on tools such as compilers, assem
blers, linkers, and debuggers which provided fairly direct programming support. Initially 
all program preparation occurred "off-line" although, of course, basic utilities such as edi
tors became important software development tools as soon as computers advanced to 
the state where it was possible to'develop programs "on-line". 

Work on tools supporting activities other than program development and testing 
really started about fifteen to twenty years ago, i.e. in the late 1960's and early 1970's, 
and was soon followed by work on related groups of tools. One could perhaps charac
terise the 1980s as being concerned with support for graphically based methods, especial
lyon personal computers and workstations. Much work has already been carried out on 
tools to support formal (mathematically based) methods but it seems fair to say that 
these techniques are still immature. Consequently one might expect formal method sup
port tools to be one of the main areas of activity in the domain of individual support tools 
in the 1990s. 

Work on early integrated environments commenced in the early to mid 1970's 
although it didn't really come to fruition until nearer the end of the decade. Some of the 
early environments (eg CADES, see below) are still in use today. This is true of both the 
"mainstream" work on environments which are really the precursor to the present day 
IPSEs and more innovative approaches, eg those based on AI and object oriented tech
niques. Logically and temporally the Ada influence comes after the early environments 
because it tries to draw out general principles for developing environments based on prac
tical experience with environments. However, at least partly because of the timescales 
required for developing IPSEs, some of the work overlapped. Arguably the Ada-related 
work was the most important in the evolution of IPSEs as it essentially "set the agenda" 
for future IPSE developments. 

Computer Aided Software Engineering, or CASE, tools developed independently 
of of the "mainstream" IPSE work. They have evolved based largely on the growth in pop
ularity of structured methods (often incorrectly called methodologies) in commercial appli
cation areas. In many cases the tools have been produced by database vendors (eg ORA
CLE) and have aided directly in the development of database applications. The distinc
tion between IPSEs and CASE tools is now becoming blurred as CASE developers are 
becoming concerned with providing team support, and the IPSE (infrastructure) develop
ers are providing support for particular methods. However there still are differences of 
emphasis and, to a first approximation, the CASE tools are commercially oriented, and 
IPSEs are geared more towards technical applications. 

The trend to open environments, essentially reflects current designs and aspira
tions for IPSEs. The requirements for the provision of open environments is based on the 
realisation (often through major problems on projects) that it is very difficult to ensure 
that an adequate set of tools is available in an IPSE, and a satisfactory tool set can only 
be provided if companies other than the original infrastructure developer can provide 
tools. Thus the discussion on closed and open environments reflects the live issues of the 
second half of the 1980s, and probably of the first half of the 1990's (or possibly beyond 
as there are still major problems to be overcome). 



www.manaraa.com

44 

llLI.I Individual Tools 

For many years software developers have produced individual tools to support 
particular activities in software development, e.g. compilers, loaders and symbolic debug
ging tools. Here the term individual implies both that the tool "stands alone" and is 
intended for use by a single individual. Whilst these tools sometimes shared data struc
tures, e.g. symbol tables and store maps, they were rarely, if ever, truly integrated. In 
other words they did not share interface styles or interaction styles, were not callable 
from each other, and so on. Lack of integration led to problems including constraints on 
programmer productivity, eg caused by the need to leave one tool in order to invoke 
another, and unnecessarily high error rates, eg caused by confusion between interface 
styles. Although there are improvements in individual tools the main advances are to be 
found in modern tool sets, or groups of tools, and these are discussed in section I1I.1.2 
below. 

Most of these early tools were geared for use by an individual programmer. This 
characteristic is still true of commercially available individual tools, in the sense of stand
alone tools to do one function. IPSEs give support for teams, but each tool is still used on 
an individual basis. More recently work has been carried out on computer supported coop
erative work which genuinely has more than one individual using a tool (working on a 
specific task) at once. CSCW can perhaps most readily be thought of as the electronic 
equivalent of working together on a white board. There are many research problems to be 
addressed in producing such a tool, but if the problems can be overcome, then the results 
should be very useful. 

A further limitation of the early individual tools was that they usually only sup
ported the idea of the "current version" of a piece of software. However with large sys
tems it is often necessary to have different variants of the same program, e.g. compilers 
for different target computers, and to have many versions of a program (representing it's 
change history). Tracking versions is important not only so that it is possible to revert to 
an earlier state if errors in development are discovered, but also to understand the rea
sons for changes to the software. Typically the early tools left management of variants 
and versions of programs to the individual or (if he was lucky) to the operating system. 
Some later tools did give support for versions. Ironically such tools are difficult to inte
grate into IPSEs as the view of versions held by the tool and IPSE may not be compati
ble. Nowadays we would view version management as being a job for the IPSE infras
tructure, operating system, or a specialised tool, rather than being the province of each 
individual tool. 

Whilst we have stressed issues to do with the infrastructure of IPSEs it must be 
remembered that it is the tools which actually "do things", ie provide the functionality 
necessary for carrying out software development in a semi-automated way. As such the 
individual tools are a very important aspect of an IPSE. We would now expect many soft
ware development activities to be carried out by groups of tools, but there are some 
classes of tools which may still "stand alone". Examples might be: 
• Cost Estimation - eg to support COCOMO [Boehm1981J; 
• Performance Analysis - eg based on queuing models of system behaviour; 

Language independent debugger. 

Of course such tools may still share data via an IPSE infrastructure. 



www.manaraa.com

45 

111.1.2 Groups of Tools 

A natural extension of the idea of simple programming tools is a group of tools 
which are designed and conceived not only to carry out individual tasks, but to work 
closely together to support some larger task (this is a form of tool integration). An obvi
ous example might be a suite of tools intended to establish the test coverage (number of 
paths executed) by executing a program with some test data. Here one tool may instru
ment the program source to be tested with calls to a journalling tool. The joumalling tool 
would keep a log of program execution, detailing all the branches executed during testing. 
A third program would then calculate test coverage from the journal and information pro
vided about the program structure by the instmmentor. Whilst each tool carries out a spe
cific job, the group carries out a much more major task which is clearly only possible 
because they share data and are designed to common data formats, etc. 

Many organisations, systems and projects have helped foster the development of 
groups of tools. However it is perhaps UNIX which has done most to foster this notion. 
One example should illustrate the point. UNIX supports a set of tools, known as the Pro
grammer's Work Bench (PWB), which facilitates version and configuration management. 
These tools achieve close integration by using shared file formats, and provide facilities 
for the management of versions and the building of software systems. 

We can further illustrate the idea of groups of tools by means of an example of the 
use of the PWB. The UNIX PWB includes the much-imitated Source Code Control Sys
tem (SeeS) [RochkindI975] which provides efficient storage of, and access to, multiple 
versions of source modules. Instead of recording a complete copy of each version of a file 
sees maintains one (or a small number of) complete copies of the file and "deltas" which 
represent the changes (edits made) in proceeding from one version to the next. Clearly it 
is possible to recreate any version by applying the appropriate set of deltas to one of the 
complete files. There are now many systems available based on this principle. Typically 
they can store twenty versions of a file in the space that would be needed for two com
plete versions. Thus sees is useful in itself, but much more so in conjunction with Make. 

Make [Feldman1979] uses stored representations of the commands (scripts) nec
essary for constructing an item of software from its constituent parts, e.g. a set of mod
ules. Make will then build an item of software (or another item such as a document), by 
invoking the necessary programs on the appropriate files, minimising the amount of work 
carried out. (An example of the use of Make is shown overleaf.) If the program or docu
ment is always "made" from the latest version of the sources then sees is of little value 
except as a way of saving space. If, however, the program is to be made from a mixture of 
the latest versions and specific named versions of items, eg items for a particular target 
machine, then sees and Make can be used together very effectively to retrieve and use 
the necessary versions of the items. Make and sees facilitate the production and main
tenance of multiple variants of the same system quite effectively - so long as only one 
individual is working on the project. 

sees and Make are efficient both in human time and machine time (assuming that 
the scripts are designed correctly). In general this is the aim of most software engineer
ing tools - to remove or reduce clerical tasks to allow the software engineer to focus on 
the primary intellectual tasks, rather than the clerical and administrative detail of the 
development process. 



www.manaraa.com

46 

MAKE EXAMPLE - SYSTEM STRUcrURE 

Parser 
Generator 

Compiler 

Compiler 

MAKE EXAMPLE - SCRIPT 

Executable: codegen.object object Library 
load codegen.object Library object 

codegen.object: codegen.source Definitions 
compile codegen.source 

object: source Definitions 
compile source 

source: Grammar 
parse Grammar 

The example shows the structure of a system (some form of compiler) which is 
part produced by a parser generator, and part produced by compilation and loading. The 
circles represent data objects (typically files) and the rectangles represent programs. The 
script shows the file that would be used by make to reconstruct the Executable. For each 
pair of lines the frrst line indicates that the item before the colon is dependent on the 
items after the colon. The second line says what needs to be done (eg recompilation) 
afterf any of the items which are depended upon change. The changes "ripple through", so 
a change in Grammar would result in "parse Grammar" being executed, resulting in a new 
source, resulting in "compile source" and so on until the Executable is reconstructed. 
Although the example is simple it shows the principle on which Make works quite clearly. 



www.manaraa.com

47 

Make is useful, but it has a number of limitations. Most seriously the user has to 
define the dependencies between the modules correctly otherwise the program (or what
ever) will be built incorrectly. In addition there is no automated checking of the consisten
cy of the Make scripts. This is primarily because Make views the file as the basic unit to 
be managed, and it does not look at the internal structure of files. (This is an illustration 
of the point made earlier: in order to be general the tool is weak in the sense of generat
ing or checking the build information.) Thus, even with a programming language such as 
Ada where module dependencies are explicit, Make files have to be generated manually. 
In principle one could write a program to produce a Make script in each specific case, eg 
Ada programs, and some such tools have· been produced. Nonetheless Make could be 
more effective in eliminating clerical work and errors in building programs and documents. 

Make doesn't deal particularly well with teams. There is a useful extension to 
Make, known as Build, [Erickson1984] which goes some way towards team integration. 
This allows different programmers to share a Make script, but to use their own local ver
sions of some of the files. Thus individuals can work on parts of the system independent
ly whilst sharing those parts of the system sources which are stable. This is a tool
based mechanism for achieving the style of controlled sharing via "domains" illustrated in 
section n.1.4. 

Reflecting our concern with mechanisms for achieving integration, it is interesting 
to consider the tool integration faciltities available in UNIX for producing co-operative 
groups of tools, especially as UNIX is often cited as being one of the most effective oper
ating systems, in this respect. UNIX allows groups of tools to interact via sequential 
byte streams known as pipes. As well as allowing tools to interoperate, pipes also make 
possible an incremental approach to developing tools, the re-use of code, and the adop
tion of standard approaches to standard problems. This basic principle was seen as fun
damental even in the early development of UNIX [Ritchie 1978]. In some senses UNIX 
provided an early example of a PTI (see section 11.1.2) although tlle term PTI wasn't 
coined until much later. 

However, although UNIX offers some opportunity for integration, including the 
production of groups of tools, it does not do so entirely satisfactorily. Some of the prob
lems are simply issues of usage. Although tools can be integrated via pipes there are 
some technical limitations. Pipes are unidirectional communication channels, and the 
standard way of connecting programs (via the UNIX shell) makes it impractical to con
struct feedback paths between the tools. Experience with software engineering tools, eg 
with a literate programming tool known as CWEB [Thimbleby1986], has shown that this 
lack of feedback patlts leads to complications in tool design, and the replication of code in 
different tools (because information has to be worked out in more than one place as it 
can't be fed back down tlte series of pipes). Thus although UNIX, and otlter operating 
systems, offer some integration capabilities they are not adequate to support integration 
in the full sense of the term. This can lead to inefficiencies in use of the UNIX tools. For 
example, when producing documents using the troff toolset (a set of text and diagram for
matting programs) diagrams are produced by one tool, and the text is actually laid out by 
another. Diagrams are processed before text. Consequently a change in point size by tlte 
text formatter can't be reported to the diagram formatter for it to change the size of boxes 
to include text. The necessary changes can only be effected by the user iteratively making 
changes to the box size. Tool integration in an IPSE would aim to eliminate these prob
lems by facilitating bidirectional communication. 



www.manaraa.com

48 

llI.l.3 Early Integrated Environments 

In many respects CADES represents a milestone in IPSE development and 
arguably was the first "true IPSE" [McGufflnI979] (although the term IPSE post-dates 
CADES by many years). CADES was initially developed by ICL in the mid 1970's for 
the development of the VME operating system. It is still used for ongoing support and 
maintenance of VME which is a now very large-scale (several million line) suite of pro
grams which exists in many variants (eg a High Security Option - VME HSO). CADES 
provides "planes" which are essentially consistent (in the sense of update state) views 
of the complete software development. A programmer works in one plane, and changes 
which he makes are propagated only to those planes where they are relevant. This is 
another style of solution to the controlled sharing/domain problem identified above and 
was a major innovation at the time (indeed many more recent systems solve this con
trolled sharing problem less well). 

CADES also pioneered the use of (commercial) database technology for the IPSE 
infrastructure. Whilst there are still arguments about the best form for an IPSE database 
it is now becoming common, if not standard, practice to develop IPSEs on top of a com
mercial database. Thus CADES was innovative in its implementation technology, as well 
as in its solution to the team sharing and version management problems. 

At about the same time as the initial work on CADES there were a number of 
interesting tool developments in the Artificial Intelligence (AI) community. Most of these 
developments could be categorised as tool integration, where the tools have intimate 
knowledge of each other' s data structures, although a lot of work was also done on inter
face integration. For example, in AI environments, it is common to link compilers and edi
tors so that only those lines of a program which have been changed are submitted for re
compilation. The minimal amount of recompilation is then carried out, based on an analy
sis of the ramifications of the changes. This is often referred to as incremental compila
tion, and it yields a very fast edit-compile-execute cycle thus facilitating high productivity 
in program development (although arguably it leads to "hacking"and the production of low 
quality programs, and wasted development efffort). Examples of such environments are 
the AI/Lisp machines such as the Symbolics, and toolsets such as POPLOG 
[Sloman1983]. 

The main distinction between the AI and "conventional" IPSEs is that the AI envi
ronments focus on productivity, and the conventional ones focus on control over software 
development. A secondary distinction is between the stress on support for teams with 
conventional IPSEs, and the stress on individual productivity in the AI environments. 
There are similar (perhaps concomitant) differences in technology. The conventional 
IPSEs use databases whereas the AI environments share in-store data structures. 
Note that this latter facility overcomes the problems of the unidirectional communication 
via pipes found in UNIX - but at the cost of hiding the interface between the tools and 
making it difficult to extend the toolset. The aim, or hope, with current IPSE trends is to 
get the benefits of secure, typed, data storage gained from using database technology in 
the infrastructure with the fast and efficient inter-tool communication achieved by the AI 
environments. 

The early Object-Oriented programming environments, typified by Smalltalk 
[Goldberg1983], were (and perhaps still are) noteworthy for the high degree of integra-



www.manaraa.com

49 

tion achieved. Again the integration was largely oriented towards achieving productivity 
for single users, rather than control over teams. From the point of view of what they tell 
us about tool integration these systems are perhaps little different from the AI environ
ments. However the object-oriented technology is now beginning to effect mainstream 
IPSE development, so it is instructive to consider the topic in a little more detail. 

The essence of object-oriented systems is that they encapsulate data with the 
procedures which operate on the data, and that access to data is only allowed through 
these procedures. In many object-oriented systems invokation of the procedures (usually 
known as methods) is via message passing, and there are often inheritance mechanisms 
which enable the functionality of one object to be (partly) derived from that of another. 
There are considerable variations between different object-oriented systems, so the 
above simple description does not accurately characterise all such systems. However 
despite these variations, it appears that object-oriented approaches aid software devel
opment (and arguably they represent a form of integration). There is now a significant 
trend in IPSE design towards so-called object-oriented environments. Stress is being 
laid on the production of object-oriented databases for the IPSE infrastructure, although 
the production of such databases, and demonstration that they are effective for IPSEs, is 
still an open research question. However this serves to illustrate ways in which the early 
work on integrated programming environments is now affecting current IPSE research 
and development. 

m.l.4 The Influence of Ada 

All major procurers of software systems have observed the rising cost of defence 
software development and maintenance during the 1970s and 1980s. The US DoD tried to 
reverse this trend, which was believed to be at least partly caused by diversity in pro
gramming languages used on their projects, by sponsoring the development of a new pro
gramming language and an associated support environment. The language was called 
Ada and the environment was called an Ada Programming Support Environment (APSE). 
The language evolved after a series of competitive design studies, and it is now an 
accepted international standard; there are also many production quality compilers for the 
language. 

The DoD embarked on a similar programme for the development of APSEs - but 
with significantly less success. However they sponsored the production of a require
ments definition for an APSE which has been extremely influential. The results of the 
study, known as Stoneman [DoD1980), identified what has for some time been accepted 
as the basic architecture for an APSE (or IPSE). The Stoneman architecture identified a 
set of layers, or rings, as illustrated overleaf. We have already referred to most of the 
components of the Stoneman architecture, but it is worthwhile briefly reviewing the archi
tecture, as it was conceived. 

The architecture assumes that a kernel environment is implemented on top of an 
operating system, providing the common facilities on which all the tools depend, and 
through which they communicate. In other words this is the basic infrastructure for inte
gration and it is produced by extending the operating facilities to provide capabilities 
more appropriate to software development, and perhaps hiding some operating system 
facilities which could compromise the APSE integrity. 



www.manaraa.com

50 

STONEMAN ARCHITECTURE 

It was assumed that a database would be used within the kernel to provide a 
repository for the project data. As should be clear from earlier discussions, the kernel 
was also intended to provide mechanisms for tool invokation and control over team work
ing, e.g. controlled sharing of sources. The PTI is the interface between the tools and the 
kernel; this interface would be used by tool developers instead of (in preference to) the 
operating system facilities. It is referred to as "public" as the intention was that the inter
face definition would be made widely available to facilitate a "tools industry". These 
ideas have been very influential - as should be clear by comparing them with the discus
sion on integration in part II. There are, however, some intersting observations which we 
can make about method support as conceived at the time. 

Stoneman identified the concept of a Minimal APSE (MAPS E) which was the ker
nel plus the minimum set of tools needed to give "useful" project support. Stoneman 
wasn't very specific about the set of tools that should be provided, but it was clear about 
the scope of the tools. The authors of Stoneman believed that it was not possible to 
develop an APSE including management integration, in the sense described in part II, 
within the "state of the art". The advent of the term IPSE (which interesting initially 
stood for Integrated Programming Support Environment and was only subsequently 
changed to use the term Project) saw the broadening of the idea of a support environment 
to cover management and other non-programming activities. Given the relative lack of 
success in producing IPSEs it appears that Stoneman's authors correctly assessed the 
situation, and that the "acronym engineering" producing the term Integrated Project Sup
port Environment was perhaps ill-judged. 



www.manaraa.com

51 

At least partly because of the (apparently unwise) limits placed on the set of 
tools to be provided in the MAPSE the Commission of the European Communities (CEC) 
commissioned a study to consider more fully the issues of support of software develop
ment throughout its entire life cycle. The study produced several suggestions for coherent 
sets of methods to cover the life cycle [McDermid 1984]. The discussion of method inte
gration in part II reflects this initial study, and the evolution of the basic ideas of method 
coherence in the subsequent years. 

This study also considered the links between the technical and management activ
ities. Particular issues which were addressed included establishment of links between the 
architecture, especially the module (work) breakdown structure, and the project plans. 
The study also considered how other managerial issues, eg software cost estimation, 
could be related to (derived from) the technical information produced in software develop
ment. It remains one of the few detailed studies of management integration. From the 
point of view of clarifying long-term requirements this was a useful and instructive study. 
However, if it has contributed to over-ambition on the part of IPSE developers, then it 
may also have done some harm to the cause of IPSE development. 

Interestingly the authors of the CEC study report did not consider that PTIs, and 
open IPSEs, were feasible - again this was an issue of lack of maturity in the technology, 
and in understanding of the detailed technical requirements. We will discuss current 
IPSEs in section III.2 and PTI developments in section IV.1 to try to assess whether 
such views were sound, or over-conservative. 

IILt.S CASE Tools 

In commercial data processing there has been, for some time, emphasis on the use 
of Computer Aided Software Engineering (CASE) tools. Typically these tools support 
one of the well-known structured techniques for software development and are based on 
personal computers. These tools have really only become widely available and used with 
the availability of cheap personal computers, which is almost synonymous with the avail
ability of the mM PC range. 

The methods supported are, without exception, graphically based and include 
Structured Analysis [DeMarco 1978] and ISO [Suttcliffel988]. It is common for these 
tools to support single users, but this is changing as the database vendors, eg ORACLE, 
make use of their own database technology to improve their CASE products. Many of 
these tools are quite well integrated, from the technical point of view, as they support 
related technical activities at different stages of the development process. One limitation 
is that they often only support a small part of the life cycle, eg code generation from a 
fourth generation language (4GL). These tools are often also well integrated from the 
interfacing point of view, by comparison with, say, UNIX tools. This is both because they 
were conceived as a logical whole, and because the size of the market makes it possible 
(and perhaps necessary) to make the investment in interface design. 

A recent press report indicated that there 67 varieties of CASE tool available in 
the UK. Most support the better known methods such as Jackson System Development 
(JSD) and Structured Analysis (SA). The "varieties" are defined by having a unique com
bination of vendor, hardware platform, and method supported. In practice there are much 
fewer (perhaps less than 20) methods supported by such tools. A recent survey of 



www.manaraa.com

52 

(some) tools available in the United Kingdom, categorised by the stage of the life cycle 
which they support, can be found in the STARTS Guide [DTIl987]. 

CASE tools and IPSEs are currently evolving so that their distinctions are becom
ing less marked. IPSEs are tending to become better populated with method support 
tools, and CASE tools are beginning to address the issues of multi-user support, configu
ration management, and so on. Arguably those CASE vendors who are also database 
suppliers have a very strong market position. Not only do they have access to the 
database technology to produce effective tools but they can, if necessary, adapt the 
database technology to achieve good performance and functionality in the CASE tools. 
There is some evidence that this is happening, and it is likely that companies such as 
ORACLE will become market leaders in this area. 

Historically IPSEs have been used more in technical applications, eg avionics, and 
CASE have been used more in commercial applications. This meant that different class
es of methods were supported by CASE tools and IPSEs. The technical characteristics of 
these application domains are becoming less distinct, eg banks now not only have cen
tralised databases, but also distributed, fault-tolerant systems of A TMs, so there will 
need to be a merging of the methods employed. Thus it seems probable that the distinc
tions between CASE tools and IPSEs will be eliminated, in due course. Given the obser
vations above the database and CASE vendors may have the edge over the IPSE suppli
ers in terms of market penetration and long-term viability. 

m.l.6 Current IPSEs 

We will discuss some current IPSEs in detail below. but it is worth briefly sum
marising the nature of current IPSEs and IPSE infrastructure. More or less without 
exception, amongst companies who are concerned with producing IPSEs as a business 
proposition, there has been an adoption of the idea of an infrastructure and a "PTI". This 
is true even where the PTI is not published, as having a clean interface helps the IPSE 
implementors. Much of the work that has been undertaken with public funding (and most 
companies in the IPSE business have received some measure of public support) has been 
aimed at producing a common or standard PTI, and implementations of infrastructures 
supporting that interface. In Europe the CEC has been a major influence on this work 
through the definition the Portable Common Tools Environment (PCTE). However, at the 
time of writing, several very major projects are producing tools to populate PCTE so this 
balance in effort is shifting. 

Projects within companies, intended to produce environments in support of their 
own development work. rather than to become products, have been rather more pragmat
ic. Typically these have beer. aimed towards producing usable integrated toolsets, with
out being concerned too much about elegant infrastructure interfaces. etc. Whilst many of 
the concepts set out in part II are evident in these IPSEs. pragmatism has tended to 
mean that certain requirements, eg interface integration. have been tacitly ignored. 

Thus the principles set out in part II are a good basis for discussing and comparing 
IPSEs, even if there are some IPSEs which don't fully espouse the principles. Hopefully 
this assertion is borne out by the discussion of three current IPSEs below. 



www.manaraa.com

53 

m.2 CAPABILITIES OF CURRENT IPSES 

Our aim in this section is primarily to illustrate the capabilities of current environ
ments, as far as possible in terms of the concepts we introduced in part n. We discuss 
three environments which have widely differing characteristics in order to reinforce the 
range of possibilities encompassed by the term IPSE. The ftrst has been developed as an 
open environment by an independent software company established expressly for the pur
pose of marketing IPSEs. The second by a hardware manufacturer as an extension to 
their standard operating system, both to support "in-house" developments and to 
increase the sales of the hardware. The third was developed by a system builder, but 
incorporating commercial products, to satisfy their own development needs. These differ
ences in objectives and commercial perspectives are reflected, to quite a signiftcant 
extent, in the technical capabilities of the systems. 

For readers wishing to ftnd out more about other currently available IPSEs and 
IPSE research there are a variety of useful publications. There have been several recent 
IPSE conferences and, in most cases, the conference proceedings are now available, see 
for example [McDermidI986] and [Sommerville 1986]. Also, in the UK, the DTI has sup
ported a programme known as STARTS which has produced much useful material on soft
ware engineering, especially software engineering tools. Their most relevant publication 
is the STARTS guide [DTI1987] which summarises the capabilities of many IPSEs. 

111.2.1 ISTAR 

ISTAR [DowsonI987] is an open environment based on UNIX. ISTAR was pro
duced by Imperial Software Technology (1ST). 1ST was set up, with the primary purpose 
of producing 1ST AR, with backing from several large companies including Plessey and 
British Telecom. ISTAR was thus both aimed at a market and at solving problems as per
ceived by 1ST's backers. ISTAR is sold not as a "packaged product" but as a semi-cus
tom product with consultancy and tailoring services to adapt it to the needs of the using 
organisation. It has achieved some market penetration but it is a high-price, low-volume, 
product. Philosophically the adoption of a semi-custom approach seems entirely appropri
ate - the relatively poor commercial performance probably reflects a mixture of technical 
(eg performance) limitations of the product and a lack of market awareness of the need 
for the solutions which ISTAR offers. 

1ST AR was developed to be consistent with the UNIX philosophy in that it con
tains a number of workbenches supporting different aspects of the development process. 
Perhaps its most signiftcant characteristic is that it enforces a particular model of the 
development process known as the contractual model. The contractual model is the crux 
of ISTAR's organisation and operation. All development work is divided in to contracts 
with specifted inputs and outputs, but within the constraints imposed by these inputs and 
outputs the developer is free to fulftll his contract in whatever way he pleases. Note how
ever that contracts may specify tools to be used so it is possible to achieve quite tight 
project control through these contracts. 

Fulftlling a contract may involve subcontracting the work to other developers, 
thus a project will be represented by a hierarchy of contracts. This gives a clear project 
structure from a managerial point of view, but it also gives a way of partitioning the 
database to simplify conftguration control. In terms of our earlier discussion the contracts 



www.manaraa.com

54 

provide the domains for team control. Also 1ST AR runs on a network and the contract is 
used as the basis for distribution, one contract being carried out on one workstation. 

The ISTAR concept of a workbench is exactly the same as that espoused by 
UNIX - a group of tightly integrated tools supporting some particular phase of, or activity 
in, software development. Several workbenches are "imported" directly from UNIX, and 
some commercial products are directly imported, eg the Alsys Ada compiler and its asso
ciated tools. However most of the workbenches were developed specifically for ISTAR. 

This is another area where ISTAR is unusual as it makes considerable use of 
tool-building tools with the aim of being able to customise the environment to the needs 
of particular organisations. Methods supported through these specially developed work
benches include (a variant of) CORE which is a graphically based requirements analysis 
method, and a formal method known as Z [HayesI986]. The Z tools, known as 
BALZAC, were generated (semi)automatically by supplying the syntax, scope and type 
rules to a program generator known as GENESIS. Conceptually this tool building 
approach is very attractive as it not only allows appropriate tools to be produced in the 
first place, but it also facilitates their adaptation throughout a project. These theoretical 
attractions appear to be outweighed by the costs (in memory utilisation and performance) 
of using the tools Gudging by the author's experience with BALZAC). 

There are also quite extensive project management facilities again related to the 
contracts. Clearly progress can be represented and monitored by reference to the con
tracts, and the contracts give the basic mechanism for links between technical and man
agerial activities needed for management integration. There are also specific project man
agement tools, eg one based on Barry Boehm's COCOMO cost estimating model 
[Boehm1981]. This is a further area where ISTAR is relatively unusual. As noted above 
IPSEs give the opportunity to collect project data. However there is a risk of getting 
biased statistics if the IPSE is not used on a multiplicity of projects. 

It is interesting to summarise the capabilities of 1ST AR in terms of the five forms 
of integration identified earlier: 
• interaction integration - this seems to have been a relatively low priority although 

there is some consistency within workbenches; the desire to import workbenches 
from other suppliers and the operating system make it relatively difficult to 
achieve this for the IPSE as a whole; 
tool integration - this is achieved by a purpose-built database; 

• management integration - this is supported by the contractual approach; arguably 
this is one of ISTAR's greatest strengths, and it certainly gives more positive 
assistance in this area of project control than most IPSEs; 
team integration - again this is achieved by means of the contractual approach; 
technical integration - this is achieved for localised activities within the life-cycle 
by means of the workbenches, but there is relatively little technical integration 
throughout the whole life-cycle; arguably this is the best that can be done with our 
current understanding of software development; it is almost certainly the best that 
can be done with an open IPSE. 

Technically ISTAR is probably the most advanced and interesting IPSE available. Com
mercially it is probably ahead of its time. 



www.manaraa.com

55 

llL2.2 DSEE 

DSEE [Leblang1984] stands for Domain Software Engineering Environment. 
DSEE was produced by Apollo Computers to work on their Domain workstations. Since 
Apollo have recently been bought by Hewlett Packard (HP) work is now being undertak
en to make DSEE run on HP equipment and on heterogeneous networks of HP and Apol
lo machines. DSEE uses a distributed database manager which is implemented at a low 
level in the system (requiring modifications to the operating system kernel). This is the 
main reason why the extension to operating with HP machines in non-trivial. DSEE was 
primarily seen as a way of extending the market penetration of the Apollo computers into 
the software engineering marketplace, and was also developed to support internal soft
ware development projects. It will perhaps only be fair to judge commercial success when 
DSEE is available on HP machines. 

Despite being UNIX based DSEE is quite different from 1ST AR, in a number of 
respects. It is essentially an extension of operating system capabilities to give more 
direct support to software engineering activities, so it should really be considered as an 
IPSE infrastructure rather than a "full blown" IPSE. DSEE is intended to support essen
tially any tool which runs on the Domain or HP workstations. Obviously the available 
toolsets include compilers, but there are also other software engineering tools such as 
Cadre's Teamwork which is a set of CASE tools. 

A key component of DSEE is a distributed database manager, mentioned above, 
which is really the true infrastructure. DSEE also incorporates four "managers" which 
provide tool support for various activities in software development, eg configuration con
trol, however there is no tool installation or customisation service offered with DSEE. In 
some senses one can simply regard DSEE as a "better operating system". 

The History Manager (HM) provides source code control by maintaining histories 
of source versions, together with changes between versions. Modules and other develop
ment items are grouped into libraries and users reserve elements in the library, and have 
to obtain private copies of the items before they can work on them. Once they have made 
changes they replace the items and the HM creates a new version from the user's pri
vate copy. The HM requires users to identify the changes, and the purpose of the 
changes, they have made, or intend to make, and at any time users can ascertain which 
items are reserved, and what is being done to the items. Users can also interrogate the 
change history. Thus the HM gives basic access control over versions, and allows users 
to determine the reasons for changes to try to ensure that changes are made consistently 
and compatibly. The HM also facilitates the production of variants, and merging of vari
ants, although, for the reasons given earlier, there is always a need for checks that the 
merged changes are compatible. 

The Task Manager (TM) provides a way of identifying and tracking low-level 
changes made as part of some higher-level activity. A task description consists of a title 
and identified active items, together with a record of completed item changes. Thus a 
task, at any time, represents work that has been undertaken towards some particular 
goal (e.g. a bug fix) and the work remaining to be done. DSEE maintains central task 
lists from which work is allocated. Users work on particular tasks, identified in individual 
task lists. Thus the TM helps both in planning and scheduling work, and with identifying 
ramifications if, for example, it is decided to abandon some activity. The TM provides the 



www.manaraa.com

56 

basic link between technical and managerial actions and plays a similar role to the con
tract in ISTAR, although the use of the TM is not so strongly formalised. 

The Monitor Manager (MM) monitors user-defined dependencies between items 
(modules etc.) and alerts users in the event of any change to these modules. Thus, for 
example, it is possible to store dependencies so that when a module is modified the user 
is notified (reminded) of the need to change the associated documentation. Similarly a 
user can establish dependencies so that he is notified of any changes in modules on 
which he depends. The MM uses regular expressions for dependencies so it is relatively 
easy to specify dependencies on changing items, eg by giving a regular expression over 
the history of an item. The MM can also be used to notify oneself - thus, for example, a 
software engineer can arrange to be notified that he should change the associated docu
mentation if he changes a source code module. 

The Configuration Manager (CM) may be thought of as an extension to programs 
such as Make and Build described in part II. However the extensions are quite signifi
cant, and it is worth outlining them here. One of the problems with Make is that the lan
guage used for describing building operations is quite crude. The CM supports a more 
sophisticated, block structured, language. This enables the user to indicate much more 
clearly the structure of the system being built, and the dependencies between the differ
ent components. It also makes it relatively easy to specify variants of products, eg to run 
on different machines, and to have the variants built accordingly, eg by invoking the com
piler for the appropriate machine. The descriptions used by the CM are still usually pro
duced manually, although there are some tools for generating CM scripts, eg from Team
work designs. In general, however, there is not enough information in the purely struc
tural dependencies that can be ascertained simply by analysing a design or a program, 
and the automatically generated scripts have to be tailored by hand. The CM in conjunc
tion with the HM also provides some facilities for managing team developments. 

We mentioned earlier that emerging windowing and interface standards such as 
X-windows and the Motif "look and feel" were influencing IPSE design. DSEE works on 
top of X-windows, and can be accessed via Motif, which has a number of advantages. 
For example, in heterogeneous development systems, it is possible to maintain sources 
of a program intended to run on one class of computer on the filestore of another computer 
of another class (instruction set). If there is no cross-compiler from the development sys
tem to the execution system then DSEE will transmit the sources to their eventual exe
cution environment for compilation (using CM scripts and X-windows) and can receive 
the results of compilation for storage on the original (development) machine. This can all 
be done through the one interface, without leaving the "host" machine. Thus DSEE (and 
presumably other IPSEs exploiting this technology) can operate effectively even in het
erogeneous development environments. 

As with ISTAR we can summarise the capabilities of DSEE in terms of the five 
forms of integration identified earlier: 

interaction integration - this was initiallya relatively low priority due to the desire 
to import tools from other suppliers and the operating system; X-windows and 
Motif give some opportunities for interface integration but what is achieved will 
still be heavily dependent on the individual tool developers; 

• tool integration - this is achieved by a purpose-built distributed database; 
management integration - this is supported by the Task Manager; 



www.manaraa.com

57 

team integration - this is achieved by a mixture of the Task Manager, the History 
Manager with its ability to manage variants, and the Configuration Manager; 

• technical integration - this was not an objective for OSEE. 

Technically OSEE is less ambitious than 1ST AR, but judging from demonstrations and 
user reports it caries out its more limited role very effectively. OSEE is probably a very 
effective environment for a medium sized project seeking to use relatively standard soft
ware development practices, eg good high level languages and structured methods. 

llI.2.3 Safra 

Unlike OSEE and 1ST AR, Safra was concerned with the production of a support 
environment for a particular project. Safra was developed by British Aerospace (BAe) for 
the Experimental Aircraft Programme (EAP). The EAP is a prototype advanced fighter 
aircraft. It is aerodynamically unstable and uses active computer control over the main 
control surfaces. A flyable aircraft was produced in extremely tight timescales, with soft
ware development compressed to about one third of the time that might normally have 
been available for such a project. Safra was essentially a "one-off" IPSE development. It 
proved highly successful for its purpose, although it probably wouldn't be very widely 
useful outside the avionics application domain. BAe are now working on the next genera
tion of support environment (see part V). 

The Safra project was quite different from DSEE and 1ST AR in that it was more 
concerned with producing a single coherent method set and supporting that set with 
tools, than with providing general purpose IPSE mechanisms. Thus Safra represents 
pragmatic integration of existing capabilities, not an attempt to provide a general open 
framework. 

Safra employs CORE, MASCOT and a detailed software design method based on 
MASCOT supported by a commercial IPSE product known as Perspective. Perspective 
was developed by Systems Designers, now SD-Scicon, and supports a variant of Pascal 
extended to incorporate the basic MASCOT concepts. Perspective also provides facilities 
for configuration management and host-target working, that is developing software on 
one machine for execution on another. 

CORE is used for expression of requirements. It is a structured method with a 
well-defmed procedure (in the BAe version of CORE there are 11 stages) and a set of 
related diagrammatic notations. CORE identifies the main independent (potentially con
currently executing) activities and the data and control flows between these activities. It 
also identifies and defines the structure of the data which flows in the system (as a regu
lar expression). The functionality of the activities is described by means of text. CORE 
was supported by a graphics tools developed by BAe, which represents the resulting 
requirements in a proprietary design database known as PSL/PSA. 

MASCOT represents systems as sets of processes communicating either in a 
tightly coupled fashion via "channels" or in a loosely coupled manner via "pools". MAS
COT is normally thought of as an independent design description, but in Safra it is strong
ly integrated with CORE. There is a natural flow from the activities (and data) identified 
in CORE to MASCOT activities (and to the two types of data flow). Thus the PSL/PSA 
database also holds MASCOT designs derived from the requirements. This design is tak-



www.manaraa.com

58 

en down to the level where it is straightforward to design the process (or sub-process), 
because the unit corresponds to a simple algorithm or decision table. 

Perspective holds the source programs for the EAP software, and the derived 
object code. The code is modularised (structured) according to the MASCOT design and 
the code is kept under configuration control by Perspective. Perspective supports the 
notion of individual domains, as described in part II and a form of handshake protocol for 
entering items into, and removing them from, shared domains. 

Perspective provides extensive source code debugging facilities both for the host 
and target. Complete software (sub)systems can be exercised on the host, then trans
ferred to the target, and their execution still monitored in the target. For EAP the soft
ware was all developed using Perspective and it's host-target capabilities. Also exten
sive software testing was carried out on a rig before the software was installed in the air
craft. A number of tests were carried out on the ground, eg high speed taxi trials, before 
the aircraft was flown. Safra was used for essentially all the activities from requirements, 
upto the use of the test rig. 

The complete software system developed for EAP was 225k words of code run
ning on a distributed embedded multi-processor system. The software included some 
critical components, e.g. active management of control surfaces, and was mainly "real
time". The evidence from the project was that Safra was very successful, for its specific 
purpose. On previous aircraft, eg the Tornado, code had been developed at about 250 
lines per man year (this is probably typical for such high integrity software). For EAP 
productivity of 1700 lines per man year was achieved. The investment per software engi
neer was about £30,000, but BAe estimated that the increase in productivity repaid the 
investment six times over. The above should not be taken to indicate that there were no 
problems with the approach adopted - however it should be clear that the approach was 
effective by comparison with the company's (and the industry's) standard approaches. 

We can also discuss the capabilities of Safra in terms of the five forms of integra-
tion identified earlier: 

interaction integration - this was not feasible; Perspective and the CORE tool 
used different, and incompatible (character and raster graphics) terminals so it 
was not possible to integrate the interfaces; 

• tool integration - this was by special purpose code to provide "shells" round the 
tools and to convert between the existing proprietary databases used; 

management integration - this was not addressed within Safra; management was 
carried out external to the IPSE; 
team integration - this was achieved by means of domains supported by Perspec
tive; 

• technical integration - this was probably the greatest strength of Safra, and the 
primary reason for its success; there is a strong flow from CORE, through MAS
COT to Perspective Pascal, giving a clear technical structure to the project. 

Safra is clearly limited in its application domain and, so far as the author is aware, it will 
not be used again even on future avionics projects. However it serves to demonstrate 
that a relatively pragmatic IPSE development can prove highly effective. 



www.manaraa.com

59 

m.2.4 General Observations 

It is interesting to consider the reasons for the differences between the three 
IPSEs described above. As indicated earlier most of them stem from the different com
mercial positions of the companies involved. 

1ST AR is basically an infrastructure plus a set of tools (and tool-building tools) 
sold with a set of services. The design of 1ST AR is based on the premise that IPSEs are 
a "semi-custom business" and that it is necessary to be able to tailor an IPSE and its 
tool set to the needs of a particular customer, or project. Thus 1ST AR makes relatively 
few commitments to particular ways of solving software development problems. The main 
counter-example to this general observation is the use of the contractual approach - here 
ISTAR has made a commitment to a particular managerial style and a way of linking tech
nical and managerial activities. However it can be argued that this approach is widely 
applicable and doesn't cut ISTAR off from any classes of application. Thus the most sig
nificant characteristic of 1ST AR is that it is intended to be a way of generating solutions 
to particular software development problems, and 1ST provide consultancy and other ser
vices to develop a solution for a client. 

DSEE is essentially an extended operating system plus a set of very general pur
pose tools which can be thought of as additional operating system utilities. Thus DSEE 
is primarily an infrastructure and there is little emphasis on end-user tools, eg compilers 
or CASE tools. DSEE is sold simply as a product and there is no associated consultancy 
or customisation as there is with 1ST AR. This reflects the commercial aims of a hardware 
manufacturer who is seeking to increase the attractiveness of his products. Presumably 
this was also one of the attractions of Apollo for HP! 

BAe is (primarily) in the business of producing aircraft, not software engineering 
tools. Thus Safra reflects much more directly end user needs, and was geared towards 
the production of real operational software. Where necessary, generality and flexibility 
were sacrificed for effectiveness. Here again the commercial needs are reflected - a tool 
was needed to assist in the development of a working aircraft, and there was no value to 
be gained in producing a generally marketable product. 

The intention of this comparison is not to praise or denigrate one or other of the 
three environments. Instead the intention is to indicate the complexity of IPSE design 
and to hint at the subtlety of the decisions and trade-offs to be made in designing IPSEs. 
These examples, hopefully, make the point quite forcibly as the different commercial 
issues have resulted in the development of vastly different systems - all of which can 
still validly be called IPSEs, and which are effective in their own way. 

It is perhaps also worthwhile making some observations on pncmg and market 
penetration. CASE tools often run on IBM PCs, or compatibles, and are priced from a few 
hundred pounds for simple, single user, tools up to, perhaps, several tens of thousands of 
pounds for the more sophisticated products. Typically these have sold very well, and 
often companies have furnished whole development projects with a particular CASE tool. 
Thus market penetration is quite high with product volumes in thousands, or even tens of 
thousands. IPSEs, on the other hand, tend to be quite expensive, with prices ranging from 
the tens of thousands up to hundreds of thousands for systems such as ISTAR. Of course 
it must be remembered that, with ISTAR, one is buying a service as well as a product, 



www.manaraa.com

60 

and the environment will support many individuals and possibly many projects. Nonethe
less the market penetration of "full-blown" IPSEs is disappointing and few, if any prod
ucts, have reached a total of one hundred sales in their lifetime, and some are still in sin
gle figures. 

There seem to be several reasons for the disparity between the sales of CASE 
tools and IPSEs. Obviously there is the issue of price, but there seem to be several other 
important reasons. It is quite clear to a manager what CASE tools do - IPSEs although 
much more pervasive don't quite so obviously "do something", indeed part of their job 
may be stop people doing things, eg deleting files. Thus it is more difficult to explain the 
value of IPSEs, especially when they carry high price tags. Arguably this problem has 
been exacerbated by concentration on developing PTIs, rather than on large tool sets. We 
return to the issue of evolving PTIs in part V. 

The use of an IPSE usually implies an organisational and managerial change, 
whereas the use of a CASE tool does not. Thus the ramifications of procuring an IPSE 
are much greater. IPSEs typically don't support management activities very effectively -
but with the sums of money involved it will certainly be managers who are making the 
purchasing decisions. Finally there is relatively little evidence that IPSEs are actually 
cost effective. The experience with Safra is one of the few really successful projects car
ried out using an IPSE. Thus it is hard to convince managers of the value of making such 
major investments. 

It seems reasonable to believe that IPSEs will become viable technology both in a 
pragmatic sense, and in a commercial sense. However the evidence to date is that they 
are not, as yet, a viable business proposition. We will now turn to a more technical 
assessment of IPSEs which are currently available. 

The capabilities of most so-called IPSEs are somewhat limited when compared 
against the objectives set out in the introduction. There are three primary areas where 
the objectives are not met: coverage of all technical and managerial activities, integration 
and scaling. 

Few environments have a comprehensive set of tools. ISTAR is perhaps one of 
the best of the available environments in this respect, but there are many environments 
which provide little more than programming support. Perhaps classical examples of this 
are Smalltalk, and Perspective, each of which are very effective in their own way (object
oriented and host-target development) but which extend little beyond program develop
ment and testing. 

Integration is strongest in the simple environments such as Smallta1k and Per
spective, largely because they have been developed as single systems, and because they 
are relatively limited in scope. With open environments integration, especially from the 
interaction point of view, is difficult to achieve and most open environments will suffer 
from non-uniformity between tools. 

Scaling is a less obvious problem. The performance of IPSEs is largely con
strained by the ability to access the infrastructure database. Most present-day environ
ments are very slow, even with modest sized project teams. These performance prob
lems prevent the IPSE from scaling to dealing with large projects. Unfortunately, as the 



www.manaraa.com

61 

the environment becomes more sophisticated, e.g. the objects stored become finer 
grained and more relations are held between objects, the performance becomes worse. 
Also performance becomes worse as the demands on the database, eg for the volume of 
stored data or for the number of transactions, increase. Thus these intrinsic database 
problems make it difficult to make more sophisticated environments for big projects - and, 
of course, it is the big projects that require the sophistication. 

Thus, at present, there are limitations on the capabilities of IPSEs and it seems 
that at least some of the limitations are unlikely to be overcome in the near future. This 
reinforces our view that it will be some time before IPSEs will be a commercially viable 
technology. 



www.manaraa.com

62 

Part IV: High Integrity Systems 

IPSEs are intended to be widely applicable so they should be useful for the devel
opment of high integrity systems, ie systems whose failure could be catastrophic either 
for an organisation, individuals or the environment. The avionics programs for the EAP 
clearly fall into the class of high integrity software so there is evidence that IPSEs can be 
used for such applications. However the main concern of this part of the paper is not with 
the use of IPSEs in high integrity applications, but with the additional requirements which 
have to be placed on IPSEs for use in the development of such applications. 

Given the success of the Safra project it may seem that there are no additional 
requirements. Our aim in section IV.1 is to indicate why there are extra requirements, 
and to outline their nature. These requirements can best be thought of as an additional 
set of control rules which the IPSE has to enforce. In order to articulate the requirements 
we use a model of the development process and the data stored in an IPSE. The model is 
outlined in section IV.2 and section IV.3 uses the model to present some requirements 
on IPSEs for the development of high integrity systems. The model also gives an illustra
tion of the type of data structures which must be stored and manipulated by an IPSE. 

It must be emphasised that the material presented in this part of the paper is ten
tative. The ideas expressed here have been developed in conjunction with the evolution 
of a PTI standard aimed at high integrity systems (PCTE+). Whilst many of the ideas are 
based on current practices, eg in high security operating systems, they have not been 
evaluated in use. Nonetheless it is hoped that this brief discussion will serve to point out 
those issues which an IPSE for high integrity applications must address. 

Finally it is worth noting that one of the reasons why the Safra project was suc
cessful may have been that it was concerned with a high integrity application. Typically 
much labour intensive work is carried out in verifying high integrity systems, and much 
less effort is put into such activities for less critical software. Even though Safra was lim
ited, it removed much of the potential for error in these critical verification activities 
(because of the strong technical integration) and will have helped reduce the verification 
effort substantially. Assuming that this hypothesis is valid, such major gains in productiv
ity would not have been noticed in less critical activities due to the relatively low empha
sis placed on verification. 

IV.I INTRODUCTION 

High Integrity (or dependable) applications may have to satisfy one, or several, 
objectives. Typically these objectives are not to do with functionality, but with protection 
of resources. It is helpful to illustrate some of these possible objectives here, before dis
cussing the requirements for IPSEs. High integrity applications developed using an IPSE 
might be intended to satisfy one (or more) of the following classes of objective: 

• military security - preventing unauthorised access to sensitive (classified) data 
stored by the application; 
privacy - preventing unauthorised access to (sensitive) personal data stored by 
the application; 

• safety - preventing the computerised system, especially its software, contribut
ing to malfunctions in systems which could lead to injury, loss of life or loss of 
valuable resources; 



www.manaraa.com

63 

• integrity - prevention of corruption of data stored by the application. 

We make the distinction that security and privacy are concerned with controlling read 
access, and integrity is concerned with controlling modify access. Unfortunately the term 
"high integrity" is also used to embrace a number of objectives, including security - we 
will use the term integrity for the specific objective, and high integrity as the group name. 

Where software is used to achieve, at least in part, any of the above objectives 
then reliance is placed on the software to carry out some particular function, or to display 
some properties. In some cases the objectives for the software may be functional correct
ness but in other cases the objectives for the software might be timeliness, integrity, or 
robustness. Clearly the development environment affects the ability of the software to 
meet these objectives - for example if the wrong set of modules are integrated then it is 
unlikely that the system will be functionally correct. Thus, in this context, the question 
which we have to address is - "if security, privacy, etc. are the objectives for systems 
developed using an IPSE, what are the corresponding objectives for an IPSE?" 

The general answer to this question is that any of the objectives that relate to log
ical properties of a system, rather than physical properties of the system's environment, 
might be required for an IPSE. Thus we might require an IPSE to uphold rules about mili
tary security, privacy and integrity, however the most important objective is integrity. 

IV.I.I Integrity 

It is first necessary to clarify what we mean by integrity. Following dictionary defi
nitions we can say that integrity means "freedom from corruption or impairment". Thus 
achieving integrity means protecting something from corruption or impairment. The rea
son, therefore, that integrity is the key issue for an environment for high integrity sys
tems is that corruption of, say, a program source in the IPSE could lead to incorrect code 
being loaded in the application, and hence erroneous (eg unsafe) behaviour on the part of 
the application. We can illustrate this further by means of a stylised fault tree: 

System is Unsafe 

HardW~Fail"re 
are not masked 

Diverse Implementations 

Erroneous 
Specification 

! 
Editor Corrupted 
Specification 

agreed 

Code Gener
ation fault 

! 
Incorrectly Updated 
Compiler 

Voter Adjudicated 

Incorrectl 

Incorrect 
Code Loaded 

! 
Assembler Dir
ectly Modified 



www.manaraa.com

64 

Although clearly oversimplified the tree serves to show the sort of causal relationships 
that there can be between actions (failures) in the IPSE and in the application. Obviously 
some of these issues relate directly to the integrity of the tools which is partially outside 
the scope of the IPSE (even if the tools were developed in the IPSE). However several of 
the problems can be addressed by control mechanisms in the IPSE. This again can be 
seen by means of an illustrative, rather than definitive, example: 

Fault Editor Incorrectly Assembler 
Corrupted Updated Directly 
Specification Compiler Modified 

Possible Cause Programmer Compiler Used Programmer 
Wrote Own Before all Modules Edited Code to 
Editor Updated Improve Speed 

Possible Cure Control over Make Update Deny Direct 
Tool Introduction Atomic Access to 

(Indivisible) Assembler 

High Level Ensure Integrity of Ensure Integrity Prevent 
Control Objective Toolset by making of Composite Modification 

Tool Introduction Operations of Derived Items 
a Privileged 
Operation 

The high level objectives set out in the bottom row of the above table are clearly control 
mechanisms which the IPSE infrastructure could enforce and, as such, they are integrity 
objectives for the infrastructure. In the following we will refer to the notion of "control 
objectives" meaning the integrity objectives which the infrastructure must seek to enforce. 

The notion of integrity in an IPSE is rather more subtle than the above discussion 
implies. However we first amplify the integrity control objectives, before delving into 
these additional issues. 

IV.t.2 Integrity Control Objectives 

There is relatively little work published on integrity although some operating sys
tems, eg the VME HSO referred to above, do support object integrity labels and control 
over operations based on these integrity labels with the intention that higher integrity 
(data) items receive higher integrity labels. In the following we will draw on a number of 
previous areas of work. These include the standard ideas of military security, the notion 
of integrity labels, and concepts of integrity control as identified by Clark and Wilson 
[Clark 1987] and Chris Sennett in his work on development environments [Sennett 
1987]. The work also makes some use of enterprise model defined by Dobson and 
McDermid [Dobson 1988]. Although we draw on a considerable amount of earlier work 
we will try to make the discussion self-contained so the reader should only need to con
sult the references for amplification on the points made, or to understand the wider ramifi
cations of the selection of control objectives. 



www.manaraa.com

65 

We also note that integrity must relate to individuals, as well as programs and 
data, because many of our controls will relate to what individuals are allowed to do. In 
this context integrity really means "trustworthiness" and we will think of an IPSE user 
as having an "integrity clearance" by analogy with a security clearance. 

There seem to be three primary aspects of integrity which any set of control objec
tives should address. These aspects are: 

• rights of a user to modify data: these will be based on the user's integrity clear
ance and the integrity of the data; 

• capabilites of a tool to modify data: these will be based both on data integrity a.Tld 
the tool integrity "clearance"; 

• control over user invocation of programs/tools: this is straightforward access con
trol which might mean, for example, that a user couldn't install a new program -
only the IPSE administrator could. 

Briefly the reasons for being concerned with these issues are as follows. Control over 
modification of sources is important as it can impair the integrity of the system being 
developed in the environment. The rights are contingent on the user (or the role in which 
he is working), because we would trust the application system architect to modify the 
system architecture, but we would not trust a junior programmer (or the project manager) 
to do so. Less obviously we may have varying degrees of trust in tools. For example we 
may be willing to use an optimising compiler for initial development work, but not to pro
duce the code for system to be tested and installed, because of concerns over the correct
ness of the optimisations. Finally control over program/tool invocation is necessary as 
only certain users (roles) should be able to modify certain infonnation, eg user integrity 
clearances or the set of installed tools. 

It may not be entirely clear that there is a distinction between integrity and type 
(where we could think of the users as having types too). There certainly is a distinction, 
however, as the example of compiler optimisation should show. Both the unoptimising 
and optimising compilers would be of type, say, Ada Source -> Assembler, but each 
would have different access rights because of their (assumed) integrity. Specifically the 
unoptimising compiler would be able to write object files with an integrity level indicating 
their suitability for release (or final test) and the optimising compiler would not. Having 
control over tool invokation based on types is important - but it is not a substitute for 
integrity controls. We have just hinted at the subtlety regarding the interpretation of 
integrity by referring to "assumed" integrity. It is therefore appropriate now to consider 
these subtleties. 

IV.l.3 Belief in Integrity 

Operations in an IPSE can genuinely change the integrity of an item, eg a compiler 
fault can corrupt an assembler or binary file. However operations in the IPSE can also 
affect our belief in the integrity of some item. This can best be illustrated by means of a 
number of small examples. 

Consider a program source entered through a text editor. Initially little is known 
about it (except who produced it) and it is a reasonable expectation that it is not even a 
syntactically correct program, ie that it would have impainnents that stopped it being a 
legal progam. However if the program were subsequently compiled then our belief in its 



www.manaraa.com

66 

integrity (freedom from impainnent) would rise. If, later, the program were verified (using 
a theorem prover of known integrity!) against its specification, then our belief in its 
integrity would rise still further: the program source is now known (or believed as there 
may be faults in the proof system) to have no impainnents with respect to its specifica
tion, as well as with respect to the rules of the programming language. Thus, although the 
program source hasn't changed (and neither has its real integrity) our belief in 
(knowledge of) its integrity has, and we might want to change its integrity label accord
ingly. 

Imagine now a less formal program development where a specification is present
ed for review. The specification developer might "walk through" the specification and get 
agreement from the others present that the specification is as intended. This again raises 
confidence and the reviewers might wish to raise the integrity label of the specification. In 
fact it is possible to use integrity labels as a way of controlling progress through develop
ment phases with reviews authorising the step from one phase to the next. 

It can be seen that integrity labels are perhaps best thought of as indicative of our 
believe in something, rather than a true reflection of integrity. Seen in this guise they can 
be thought of as a useful control mechanism - and perhaps the best guide we have to true 
integrity. However the discussion also indicates that we need further set of issues to be 
addressed by the control objectives: 

rights of a user to modify integrity labels: this might include an "n-man" rule which 
would allow the attendees at a review jointly to uplift integrity labels, but not 
allow a single individual to do so; 
rights of a tool to modify integrity labels. 

It may also be apparent from the above that we need some notion of "integrity flow" 
where the integrity of some newly created or modified item reflects the integrity of the 
items and tools used to produce it. Thus an item made with five high integrity items, and 
one low integrity one, would have a low integrity (because the IPSE users would believe 
it to be impaired in the absence of any other information). 

IV.l.4 Relevant Control Objectives 

As indicated earlier there are a number of concerns facing the designer of an IPSE 
for the development of high integrity applications. We have briefly indicated some of the 
objectives related to integrity, and we will amplify on these points below. However it is 
worth pointing out that there will be other objectives to satisfy. 

For example if military software is being developed then specifications and pro
gram sources may be classified. Thus the IPSE may have to support a conventional mili
tary security policy. Worse, the program sources and the application may be constrained 
by different policies, and thus the IPSE may have to support multiple policies simultane
ously, eg when debugging the programs. In general the range of policy objectives which 
have to be supported by an IPSE may be very large and complex, see for example McDer
mid and Hocking [McDermid 1989bJ for a discussion of one possible set of policies. 

Integrity related objectives are the most important for an IPSE as integrity must 
be handled, no matter what the application domain of the system under development in 
the IPSE. Consequently we will focus on integrity for the rest of this part of the chapter. 



www.manaraa.com

67 

However it is important to note that additional objectives may be relevant for an IPSE, 
and that the objectives may be in conflict with one another, necessitating compromises in 
designing an IPSE for high integrity developments. 

IV.2 ELEMENTS OF THE MODEL 

In order to articulate the control objectives for an IPSE more clearly it is neces
sary to have a fairly precise model of the entities that comprise and interact with the 
IPSE. The following descriptive model outlines the elements which the author believes 
are needed in such a model. Space does not permit full discussion of the reasons for 
choosing this model. but hopefully most of the concepts are clear from consideration of the 
activities undertaken in software development. 

IV.2.! Overview of the Model 

There are five main elements. or entities. in the model, two of which relate to the 
IPSE users: 

Individuals - the set of people authorised to use the computer system and the 
IPSE; 

• Roles - aspects of organisational structure representing different responsibilities 
associated with the IPSE or system under development; 
Data - passive "objects" in the IPSE which may be manipulated by the programs 
(active objects) in the environment; 
Programs - active "objects" which may be tools in the IPSE, or (parts of) the sys
tem under development; 

Activities - units of work which individuals undertake in fulfilling a role. eg design 
review is an activity which might be undertaken in a QA role. Activities can be 
undertaken "manually", eg by direct user input. or by using tools and data in an 
IPSE. 

These elements appear to be fundamental to a model of software development, and hence 
an integrity model. To produce a fully detailed model of control objectives would require a 
specification of the permissible members of each entity "set". For the present purpose no 
further detail is required but we note that it would be possible to produce a categorisation 
of the above entities which would be representative of real developments. All the entities 
are disjoint. including programs and data - because we can regard programs as data 
before they are loaded and executed. This gives rise to systematic relationships between 
programs and data which enable us to deal with the "subject-object duality" which arises 
in program development. see below. 

There are attributes associated with the entities in the model which are needed to 
enable us to articulate the constraints on execution of programs which will form the heart 
of the model. These attributes are set out below. 

There are also a set of relations between the entities in the model. In general 
these would have to be stored and maintained by the IPSE in order that it could enforce 
the control objectives. The relations cannot readily be classified in any helpful way. We 
present a few examples of these relations below. 



www.manaraa.com

68 

IV.2.2 The Entities of the Model 

Here we briefly discuss the model entities introduced above. We focus on those 
entities which are most important for the articulation of the control objectives, and aim to 
give some background information to underpin the selection of control objectives. In some 
cases we give categorisations to describe the entities because we would expect the con
trol rules to depend on the particular category in question. 

IV .2.2.1 Individuals 

The individuals are the set of people authorised to use the computer system 
including the IPSE. There is no useful way of categorising the users of the IPSE except 
via their roles. 

IV.2.2.2 Itoles 

The roles represent the different responsibilities associated with the IPSE or sys
tem under development. An individual may be associated with more than one role, and 
vice versa. Here the categorisation is more important as access to functions (tools) and 
to data is determined, to some extent, by the role. The following categorisation is intend
ed primarily to indicate the most salient "integrity related" roles, however project man
agement is included as it is important in software development in tenns of allocation of 
responsibility. The roles chosen by way of illustration are: 

Developer; 
Design Authority; 
Project Manager; 
Evaluator; 

• Integrity Officer/System Administrator. 

These roles hopefully have a fairly intuitive meaning, but, in practice, roles will be very 
important in achieving integrity, so it is helpful to expand on each role here. 

A developer is responsible for some aspect of program (software system) design 
and development. This may involve both implementation and testing, or it may simply be 
a design activity resulting in some specification. There are three significant factors con
straining the role. First, the developer may produce something according to a specifica
tion he is given, but may not change that specification. Second, the developer may not by 
himself "sign off' his own work to say that his product satisfies the specification. Third, 
the developer will be accountable for, but not responsible for, his work. Responsibility 
will lie with the design authority. 

A design authority is responsible for the design of some part of a system. In gen
eral, it is the design authority who is responsible for producing the specification to which 
the developer works. The design authority can delegate authority for some activity, and 
hence accountability, but not responsibility. Thus the distinction between design authori
ty and developer is a classic case of "separation of role" for achieving data integrity. Typi
cally a design authority will develop a design for some part of a system, this will be 
implemented by a developer, and the implementation will be signed off by both the devel
oper and the design authority. 



www.manaraa.com

69 

In developing a low level specification from a high level one, a design authority 
will typically also be acting as developer (albeit of specifications not of code). The role of 
design authority is assigned by the project manager and may not be delegated. Thus in 
practice, the system design authority will define the system architecture, this will be bro
ken down in to subsystems and design authority for particular subsystems will be allocat
ed to particular individuals by the project manager. These individuals may "subcontract" 
developers without delegation of responsibility. They can also "subcontract" authority but 
not responsibility for a design review to the evaluation role. 

Both design authority and developer have the ability to create (and modify) techni
cal descriptions of systems - specifications, programs, etc. They can also carry out other 
activities, eg testing. 

The project manager role has the usual responsibilities for ensuring project 
progress, etc. In the security/integrity context the role has responsibility for defining the 
design authority for the system as a whole, and for subsystems. This responsibility may 
not be delegated. Again this is an issue of separation of role. The design authority for the 
system cannot design the system with potential flaws, then assign himself to design and 
implement the critical parts of the system. This is perhaps only germane when one is con
sidering deliberately introduced flaws in secure applications. 

The evaluators are responsible for independent assessment of the products of 
development. They have responsibility for assessing the complete system in conjunction 
with the overall system design authority. In practice this means that the design authority 
will submit the system to evaluation when he thinks it is satisfactory. Evaluation may 
also be accountable but not responsible for lower level design reviews if delegated by the 
design authority. The evaluators are allowed to access, but not modify, all the develop
ment data but they may have data of their own which is not visible to design authorities 
or developers. 

The integrity officer or system administrator is responsible for ensuring that the 
IPSE operates with adequate integrity, and for certain "housekeeping" activities. In gen
eral this involves establishing users, projects and project managers, together with 
assessing the audit trail for potential security/integrity violations. It is desirable to sepa
rate administration and integrity roles, but there are difficult issues, eg patching audit 
files in the event of disc corruption may violate the integrity rules which would apply to a 
normal user, which suggest that it is not practical so to do. A "two man" rule for certain 
operations may be appropriate. 

IV .2.2.3 Data 

The data are the passive "objects" in the IPSE which may be manipulated by the 
programs (active objects) in the IPSE. In general we have to allow for duality in the 
sense that objects stored in the IPSE can be loaded and executed as programs. This can 
be treated by means of suitable relations between programs and data. The categories of 
data needed are: 

descriptions - specifications, programs, documentation, etc.; 

evidence - test results, proofs, logs of reviews, etc.; 
test data; 
system data - including passwords, access control lists, etc. 



www.manaraa.com

70 

The descriptions represent all the results of the constmctive aspects of software develop
ment, and documentation is intended to include prosaic items such as user manuals, 
which may have integrity constraints (for example because errors therein may lead to 
security breaches in the operational system). 

Evidence is the information provided as part of the development process, and by 
evaluators, that the descriptions bear the proper relationships to one another and thus 
that the system being developed meets its integrity and security objectives. Test data 
represents the information with which the (partially) developed system is exercised. 

The system data represents the data structures necessary to maintain security 
and integrity of operation. It may appear odd that they are present in a description which 
is mainly concerned with an IPSE interface, however it is necessary to identify this cate
gory in order to articulate certain security and integrity requirements. 

In practice a further category may be needed in order to deal with new inputs to 
the system whose integrity status (category) is not yet known. 

There are also attributes associated with the entities in the model. These include: 
Owner - applying to programs and data; 
Integrity Levels - applying to individuals, roles, and data; 

• Type - applying to data and programs. 

These attributes will be used in enforcing the control objectives. 

The categorisation is almost (but not completely) orthogonal to the integrity clas
sifications presented below. It is possible, for example, to have low integrity executable 
which represents a part of the operational system which is untrusted, and high integrity 
executable. 

IV .2.2.4 Programs 

Programs are active "objects" which may be tools in the environment, or (parts of) 
the system under development. There is a straightforward categorisation of programs: 

tools; 
system (components). 

This categorisation is essential as there will be different access rights associated with 
each category. In practice, a much finer categorisation might be expected, eg related to 
the number of integrity levels available for the data and tools. Alternatively we may need 
to draw distinctions between transformational tools, eg compilers, and verification tools, 
eg test suites, as they can affect (belief in) integrity in different ways. 

IV.2.2.S Activities 

Activities fall into three basic classes: 

create/modify; 
transform; 

• analyse/evaluate. 



www.manaraa.com

71 

This simple categorisation is motivated by the need to represent the extent to which dif
ferent classes of activity can affect integrity, or are responsible for integrity. 

Most creation or modification activities will be untrusted, and their output will lat
er be checked to ensure that it is suitable for "elevation" to a higher integrity class by 
some transformation activity, or by some manual or automatic assessment activity. 

There may seem to be some redundancy between the idea of a role, a tool (as a 
subcategory of program) and an activity. However these three concepts are related, but 
disjoint. A role may involve creation and assessment of a number of data items, and thus 
embody several activities. The activities and role categories do not always bear the same 
relationship to one another - eg there will be a difference in activities when some trans
formation is carried out by a trusted tool as opposed to an untrusted tool as, in the latter 
case, additional assessment will be required. Similarly the activities do not correspond 
simply to tools. Some activities may be carried out automatically, but some may be manu
al, eg assessment via a design review. Further, more than one tool may be capable of 
supporting a particular activity. One example of this is the multiplicity of editors available 
on most computer systems. Thus there is not a unique association between any of these 
three entities. 

IV.2.3 Attributes 

As indicated earlier there are attributes associated with the entities in the model. 
These are: 

Integrity Levels - applying to individuals, roles, and data; 
• Type - applying to data and programs. 

We discuss these attributes in the above order, again seeking to give a simple descrip
tion, rather than a full definition as might be appropriate for a policy model. 

IV.2.3.1 Integrity Levels 

There is not such a well-accepted view of integrity markings as there is with 
security markings. Some of the earliest work on integrity was that due to Biba [Biba 
1977]. More recently Sennett [Sennett 1987] has addressed the issue of integrity mark
ings in an IPSE. We follow his scheme: 

Classification - a hierarchical marking. For expository purposes we will take only 
two markings - high and low; 
Categories - a project related "need to modify" marking. Elements of this marking 
set might be projects. 

The reader is referred to Sennett [Sennett 1987] for a detailed explanation of the reasons 
for adopting these markings. In essence the reason is as follows. If we assume that an 
IPSE supports multiple projects (simultaneously or perhaps through libraries passed 
from one project to another) then the ability to change data shared between projects 
should imply the right to modify information in respect of all projects which use the data. 

As we pointed out earlier the idea of integrity levels needs careful interpretation. 
In practice, the integrity labels really represent belief in integrity. 



www.manaraa.com

72 

IV .2.3.2 Types 

In general an IPSE will support a type system identifying the classes of data 
stored in the IPSE database, and possibly the tools which operate upon these data. For a 
high integrity IPSE the type systeM takes on greater significance. Some tools will be 
trusted to change the integrity levels of particular data items, or to generate new data 
items of given integrity level. However a trusted Ada compiler should not be trusted to 
generate high integrity object code (binary load images) from project plans. It is arguable 
that trusted tools should be relied on to "vet" their own input for type correctness, how
ever the use of additional type information to constrain the execution of tools reduces the 
tool's scope for malfeasance and thus simplifies certification of the tool, increases confi
dence in the overall IPSE, etc. 

Type systems are a complex subject in their own right, and it is not appropriate to 
discuss them in detail here. However it is clear that, at minimum, a type model is 
required that supports some form of data categorisation. Ideally a much more sophisticat
ed type model should be used. One possible candidate is the model supported by TenlS 
[Foster 1989]. Particular attractions of this type system include the ability to represent 
the type changes which occur when loading a program for execution. This would enable us 
to articulate, for example, integrity and security constraints on accessing a program as a 
passive object in the IPSE database and to state separately the rules that apply to it as 
an active entity whilst executing. This separation of concerns simplifies the specification 
of IPSE properties. 

IV.2.4 Relations 

The set of relations needed to describe the complete model implicit in the set of 
entities presented above is very large. We simply present here a small but, hopefully, 
representative sample of relations to illustrate the nature of the proposed model. The 
relations are presented without constraints. The relevant consistency constraints are 
illustrated below, and the integrity control objectives are also sketched in terms of these 
relations. The notation used is that the name of the property or relation is given, followed 
by the operand names in chevron brackets, ie property/relation<operands>. 

IV .2.4.1 Properties 

The properties of entities have been indicated above, and include: 
integrity<program> - the maximum integrity level to which a program can write 
data, ie its integrity "clearance"; 
integrity<role> - the maximum integrity level to which a role can write data; 

• integrity<individual> - the maximum integrity level to which an individual can 
write data; 

• type<datum> - the type of the data item; 
• type <program> - the type of the program. 

These properties are those outlined informally in the preceding sections. In practice the 
detailed control objectives would be expressed as predicates over these properties and 
the relations described in the subsequent sections. This can be thought of as forming part 
of the schema for the IPSE database. 



www.manaraa.com

73 

IV .2.4.2 Binary Relations 

The binary relationships represent some of the basic properties needed to articu
late the integrity objectives set out in section IV.3. Again we simply present an illustra
tion - the complete set would be quite large and complex: 

• needs<role, data> - data which a role can access - this may be directly an integri
ty issue or it may reflect access as laid down by a contract (as with ISTAR); 
assigned<role, individual> - simple binding of user and role to which they are allo
cated; 

• accountable<role, data> - data which role is accountable for producing; 

• responsible<role, data> - data which role is responsible for producing; 

authority <role, data> - identification of design authority for data; 

• evaluator<role, data> - identification of evaluator for data; 

• readable<data, program> - data for which program has read permission; 

• writable<data, program> - data for which program has write permission. 

These relations show the main properties associated with the model as it relates to the 
"static" picture, that is the assignment of roles, the visibility of data, and so on. 

IV.3 Control Objectives 

There are many possible values for the relations defined above which would not 
correspond to a "meaningful" state of an IPSE. The control objectives are intended to 
ensure that the values are meaningful. We indicate first some basic consistency objec
tives, then set out some objectives which would constrain operations in an IPSE. 

IV.3.! Consistency Objectives 

The objectives are presented informally using the relational notation introduced 
above. We use the asterisk (*) to represent that an element might be repeated in the 
relation. Thus "role*" below represents multiple roles in the "valid_assignments" relation. 

valid_delegation<rolel, role2, data> - rolel is design authority for data and role2 
is of type evaluation or design authority or development; 
valid_authority<role, data> - role is design authority and no other role is design 
authority for that data; 

• valid_assignments<individual, role"'> - individual does not have evaluation and 
design/development/management responsibility for the same data; integrity level 
of role is less than the integrity level of the individual. 

These are the constraints which derive from the informal descriptions of the entities given 
in section IV.2 and we would expect them to be upheld by the IPSE. Thus these control 
objectives are more of the form of data invariants, than control mechanisms. However we 
would, inter alia, require these rules to be upheld on modifying the IPSE state. This is 
the realm of the transition objectives. 

IV.3.2 Transition Objectives 

These control objectives are constraints on operations which can be carried out in 
the IPSE, consequently they govern the state transitions made by the IPSE. The first of 



www.manaraa.com

74 

the following objectives following represents the direct integrity flow constraint. They are 
again expressed in a simple relational form - they may be viewed as being stylised post
conditions reflecting the allowable state after the transition (contingent on the state 
before the transition). The objectives of section IV.3.1 still apply. 

allowable_update<role, program, data*> - the integrity of the data exceeds that 
of the program and the role; 
validl_tooUnstallation<program, role*, type, integrity> - tool can be installed if 
the types of data are visible, and the integrity level of the tool is appropriate, giv
en the roles in which the tool is intended to be available; 

valid_sign_off<individual, role, program, data> - role is design authority for data; 
individual integrity exceeds that of the data; individual is assigned to the role; pro
gram integrity exceeds that of the data and other program constraints satisfied -
this represents the constraint to allow the individual to "sign off' an item and so 
raise the integrity level; multi-role "sign-off' could also be represented easily; 

• valid_tool_execution<role, individual, program, data*> - program is a tool; execu
tion is type valid; explicitly referenced data is accessible to user in role on access 
control grounds; integrity of data written is exceeded by that of integrity of role 
and tool. 

There are clearly other direct controls, but these are some of the most crucial ones. 

IV.3.3 Elaborating Control Objectives 

We have illustrated the nature of some possible control objectives. If developing 
an IPSE for high integrity systems, then a complete set of control objectives would need 
to be elaborated. So far as the author is aware most work on this front has been done in 
the context of PCTE+ which is an extension of the peTE PTI intended for use in high 
integrity, particularly military security, development projects. PCTE+ supports integrity 
labels, security labels and types (albeit rather crudely). However there does not yet 
seem to be agreement on a sensible set of control objectives for PCTE+. 

IVA COMMENTARY 

Even the brief illustration of control objectives given above serves to illustrate the 
complexity of the necessary rules. This complexity is very worrying, because there are 
already difficulties in producing effective IPSEs even without considering these control 
objectives. It seems worthwhile amplifying on the issues of producing high integrity 
IPSEs, before drawing more general conclusions. 

There are a number of aspects of the development of a high integrity IPSE which 
we need to consider. Four important questions are: 

usability - is the user interface intelligible? 
assurance - how confident can we be in the integrity of the IPSE implementation? 
effectiveness - is the IPSE effective for software development? 
cost-effectiveness - does the IPSE give "value for money"? 

In many sense the last question incorporates, or sums up, the first three. We treat the 
points in turn. 



www.manaraa.com

75 

If the set of possible rules for integrity (and perhaps privacy or military security) 
are all directly and independently manifest to the IPSE users then it is likely that the 
IPSE will prove bewildering to use. However suitable IPSE organisation should make it 
possible to remove many of the possible sources of confusion, eg by making all the con
trols implicitly defined by the domain in which someone is working, or the activity on 
which they are working. Thus it should be possible to reduce, if not eliminate, the com
plexity of the interface, as seen by the typical software engineer, caused by the integrity 
controls. However the system management/integrity policy management interface will be 
very complex, and this may mean that, in practice, it is necessary to live with a rather 
simpler set of rules. 

The implementation of the IPSE infrastructure clearly has an effect on integrity of 
the software developed using it. Specifically it needs to be of high integrity - with respect 
to corrupting the programs, specifications etc. - if we are to trust it to develop high 
integrity software. (Clearly there is a recursion here but we only consider the IPSE 
itself.) Thus we need to have confidence, or assurance, in the integrity of the IPSE imple
mentation. Estimates for the size of an implementation of PCTE+ (the only PTI to 
address the integrity issue) vary, but figures of upto a million lines of code have been 
quoted. There are major technical problems in gaining assurance in systems of such size; 
it is also likely to be very expensive, even if the "mIsted" parts of the system can be min
imised. 

With effectiveness we are most concerned about the performance of the IPSE, 
especially where it is layered on top of an operating system and an alternative develop
ment environment would simply be that operating system. If tools run much slower in the 
IPSE then there will be a cost penalty in using it - and also problems of morale among 
the staff using the IPSE, affecting quality, and other facets of the software. Again taking 
PCTE+ as a guideline, given the volume of code, it seems far from clear that adequate 
performance can be achieved. However it is possible to implement integrity controls fairly 
cheaply as has been demonstrated, for example, with VME HSO. This might mean that it 
is only viable to implement a high integrity IPSE on top of a high integrity operating sys
tem from the point of view of effectiveness. This point will really only be answered by tri
al implementations and use. 

Cost-effectiveness really relates to whether or not there is a cheaper way of 
achieving the same end result, ie high integrity applications. This is still an open ques
tion, but the above observations on effectiveness, assurance, etc. tend to indicate that 
there would be problems in supporting a sophisticated set of control policies with the cur
rently available IPSE technology, in a cost-effective manner. Perhaps the fact that Safra 
was used to great effect without any of the controls illustrated above indicates that the 
presence of any sort of IPSE is a great help, and that "specmanship" in trying to improve 
integrity controls will at best be neutral or may actually hinder high integrity develop
ments, not help them. We return to PCTE+ and the issues of high integrity developments 
in section V.1. 



www.manaraa.com

76 

Part V: Conclusions 

Here we briefly consider the trends in IPSE design and implementation before 
drawing some conclusions on the "state of the art" in IPSE design and the future evolu
tion of IPSEs. The conclusions are drawn, to some extent, from the "evidence" presented 
above and, to some extent, are subjective views based on observation of a number of 
IPSE projects. 

Some technical comments are made in this concluding part of the chapter, but our 
aim has been to focus more on commercial and political issues. Thus, for example, much 
of the discussion on IPSE trends discusses what is likely to be available in the market
place in the near future. 

V.I IPSE TRENDS 
f 

There are many interesting trends in IPSE design and implementation. Probably 
public tools interfaces, infrastructure implementation technology (primarily databases), 
the convergence of CASE tools and IPSEs, and process modelling are the most relevant. 
In the conclusions we consider the trends in the use of IPSEs. 

V.I.1 PTI Developments 

It is clear that IPSE developments are expensive. For this and other reasons, eg 
portability of tools and "portability" of software engineers, it seems desirable to try to 
develop standard PTIs. We briefly consider the main developments, then make some 
observations on the viability of the approach. 

There is considerable interest in developing and standardising PTIs. The Euro
pean Commission has supported the development of the Portable Common Tools Envi
ronment (PCTE) which is a fairly elementary PTI strongly influenced by UNIX. The 
infrastructure only supports files, not a true database. Several IPSE infrastructures have 
been developed to support the PCTE interfaces and there are many projects developing 
tools to the PCTE interface. Some of these are commercially available. Nonetheless it is 
generally accepted that PCTE is rather weak, and as a consequence there is a develop
ment, known as PCTE+, which addresses such issues as security, integrity and databas
es. It is worthwhile discussing the international dimension in IPSE interfaces, before 
returning to PCTE+. 

In the USA the Common APSE interface Set (CAIS), and its revision, CAIS-A, 
have developed in a similar manner to PCTE and PCTE+, but with DoD support. The 
PCTE+ and CAIS-A interfaces are conceptually similar and there are now proposals to 
unify the two definitions. Also, in the commercial arena, Atherton Technologies are devel
oping a "standard" known as ATIS based on an existing product, the Software Backplane 
[Paseman1988] aimed at the same problem as PCTE+ and CAIS-A but which is rather 
more technically advanced, being based on object-oriented technology (see the next sec
tion). 

There are massive documents describing PCTE and CAIS. The functions visible at 
the interfaces are defmed in terms of procedures in various programming languages, and 
these definitions are typically referred to as language bindings. For example, there are 
definitions of the Ada and C programming language bindings for PCTE+ running to about 



www.manaraa.com

77 

500 pages per language. Worse, the CAIS-A definition runs to 1100 pages. However 
there are few, if any, good overview documents and it is hard to understand these inter
faces at a conceptual level from the available specifications. The interested, and persis
tent, reader can get further information on PCTE+ from Yard Limited in Glasgow and 
information on CAIS-A is available via the 000. 

One interesting question is - will IPSEs developed using these emerging stan
dard interfaces be cost-effective? Again we are in the realm of speculation because there 
is no practical experience of the use of the interfaces, but we can draw some observa
tions. An IPSE infrastructure can provide team integration, but only facilitate (although 
possibly to a large degree) the other aspects of integration, viz: interface, management, 
technical and tool. The facilities for team integration can be provided on top of operating 
system facilities, so good operating systems and commercial products such as A TIS, 
form the "competition" for PTIs, at least at the technical level. We discussed effective
ness and cost-effectiveness of PTIs in section IV.4 above and our views are somewhat 
pessimistic - bluntly the current PTIs seem to be very complex and costly for the benefit 
to be gained from using them. However it may not be necessary to rely on speculation for 
much longer. There are now two competitive design studies for PCTE+ being undertaken 
in the UK, and an implementation is underway in France. The UK studies also involve 
evaluation exercises for PCTE+, so some (relatively) firm data should be available soon 
on the cost-effectiveness of PCTE+. 

Another interesting question is - will IPSEs based on these PTIs succeed, and be 
widely used? This is harder to answer than it might seem. Even if PCTE+ is found techni
cally wanting there is considerable political pressure behind the development and adop
tion of PCTE+. Further, some companies have expressed their commitment to "make 
PCTE+ work" so there will be considerable commercial force behind the standard. The 
history of computing is full of examples of systems (eg languages and operating sys
tems) which are not very satisfactory technically, but which are nonetheless commercial
ly successful. It is possible that PTIs such as PCTE+ will fall into this class. 

Thus it seems likely that a major trend in PTIs will be the consolidation of the 
position of the current publicly sponsored definitions, and a slow evolution towards com
mercial viability. It is unclear whether or not other approaches, such as ATIS, or 
improved operating system definitions, such as POSIX, will represent a real commercial 
challenge to the PCTE "family" of PTI definitions. 

V.l.2 IPSE Implementation Technology 

One of the most important technical keys to making an IPSE infrastructure work 
effectively is the database. Early IPSEs used files, but in order to get fme grained control 
over software development it is necessary to be able to store smaller objects, eg proce
dures or assertions, and to represent relationships between them. Consequently later 
IPSEs use some form of database and most are, at least superficially, relational. 

Development of IPSE databases has, however, proved problematic. There are 
strong technico-economic constraints to use existing database technology as many man
decades of work has gone into making the databases fast, efficient, reliable, robust etc. 
Unfortunatlely IPSE databases need to contain large unstructured objects, eg text and 
object files, and the objects stored are very complex and hierarchical, eg one might wish 



www.manaraa.com

78 

to inspect a program module as both its source text, its symbol table and its load image. 
Further it is often necessary to "navigate" about the database much as one would in a 
hierarchical files tore. Thus, although relational databases are used, they often have to be 
supplemented or extended in order to give them additional capabilities. It is probably fair 
to say that the relational basis is not entirely satisfactory for an IPSE infrastrucmre but 
the attraction of the mature database technology has often overridden such concerns. A 
current trend is towards the investigation of object oriented database techniques which it 
is believed might overcome the technical problems of relational approaches, and which 
might, in time, become mature technology. 

As indicated earlier, object orientation essentially means that programs do not 
directly access data structures, instead they access data via procedures associated with 
each data item. These procedures can preserve certain properties of the data. For exam
ple if a bank account balance is represented as a real number in conventional program
ming then it would be quite possible - although quite meaningless - to take the square 
root of a bank balance. In the object oriented approach such misuse of data would not be 
feasible as the object representing bank accounts would not allow direct access to the 
real number representation of the balance and would not implement a square root opera
tion. Thus the object oriented approach supports, inter alia, the notion of data integrity. 
As should by now be clear integrity is very important for IPSE databases and it is rela
tivelyeasy to achieve data integrity in an object oriented style. 

This is a very rapidly evolving area of research and space does not permit a full 
survey of projects. One project applying OODB technology to the development of support 
environments is DAMOKLES [Dittrich1987}. However, as with much of IPSE technolo
gy, the potential is not yet realised and there are essentially no IPSEs available which 
are ftrmly based on the object-oriented approach. The "most object oriented" IPSE is 
probably that produced as part of the Alvey ASPECT project [Hitchcock1990] and this is 
very much a research vehicle, not a robust implementation. 

There are other trends in IPSE infrastructure and databases. Problems being 
addressed include the issue of providing effective access to the large volumes of data pre
sent in an environment. This is leading to the development of "active databases" which 
volunteer information to their users at appropriate points. This is essentially a generali
sation of the DSEE idea of a monitor manager, and is typically achieved by implanting 
rules, e.g. in Prolog, in the database (for this reason the term intelligent databases is 
sometimes used). These rules are "triggered" when certain data values are present in 
the database and cause further data to be generated, or actions to be taken. One use of 
such techniques might be to inform a project manager when the end of a task is reached, 
and the required deliverables have not been registered in the project database. Object ori
entation and active databases seem highly compatible - one simply requires that one of 
the method objects is triggered when a speciftc condition obtains. 

In research IPSEs the trend seems to be very firmly towards object orientation 
and active databases. There is a lot of activity in developing commercial object oriented 
databases, per se, but little on commercial object oriented IPSEs. There are still consider
able technical problems to be overcome before object oriented IPSEs can be produced, but 
the evolution of suitable database products suggests that such IPSEs may become viable 
commercial technology in due course, bearing in mind the comments above about the need 
for mature database products to support IPSEs. 



www.manaraa.com

79 

V.l.3 CASE and IPSE convergence 

We have previously drawn out the distinctions between CASE products and 
IPSEs. It seems unquestionable that the trend will be for these two classes of product to 
"move towards one another" in terms of the functionality offered. In the long run we may 
not draw any distinction between the two classes of product. Arguably those CASE ven
dors who are also database vendors should have the competitive edge. They already 
have products which offer good "end user functionality" and the database technology nec
essary for mature products. Arguably the database vendors are tied by their relational 
technology, but there is already some evidence that they are developing object oriented 
databases. Further some CASE/database vendors are working on computer supported 
cooperative working - and this will probably be a key to the future utility of IPSEs/CASE 
tools. The trend towards CASE/lPSE convergence is already apparent and seems cer
tain; there may also be a trend for the database and CASE suppliers to dominate the mar
ket. 

V.l.4 Process Modelling 

If environments are to be flexible then they must be adaptable to different develop
ment processes, e.g. incremental or contractual, as well as different methods. In order to 
customise environments it is therefore necessary to be able to describe, or model, the 
software development process including the set of stages to be gone through, the rela
tionships between the stages, etc.. This has led to the notion of process modelling. Pro
cess models are much more detailed than life cycle models - the aim is to be able to pro
duce models down to the level of individual tool invokations, for example in compiling a 
part of a software system. If these models can be stored in an IPSE then they can, in prin
ciple, be used in order to control the development process both constructively, eg to make 
new facilities available, and in a more formal control sense, eg to enforce certain QA 
actions before software is released. Of course process models have to include 
"invokation of the user"so that the creative aspects of software development can be 
encompassed. 

It can be argued that the process model is just a "fancy database schema", or a 
"fancy makefile" but it is much more extensive than either. It covers issues such as tool 
invokation, which the schema does not, and it also, in principle, covers the complete 
development process, whereas a makefile deals only with a fragment of the development 
process. In practice software process models are not yet at the state where they can be 
used for complete projects, and clearly there are potential pitfalls implicit in this approach 
which might result in unnecessarily constraining productivity and creativity. Process mod
elling is a very interesting topic, but clearly it is still very much a research issue. Some of 
the most interesting work in this area is discussed in a series of software process work
shops [Dowson1988]. From the point of view of trends it is still rather premature to say 
whether or not process modelling will make its way into commercial IPSE products. 

V.2 CONCLUSIONS 

IPSEs are conceptually, and in practice, complex artefacts. It is relatively easy to 
see a set of high level objectives for IPSEs, and much less easy to achieve those objec
tives in practice. As we have indicated above most of the presently available IPSEs fall 
far short of the overall objectives that we have identified. Further it is unlikely that the 



www.manaraa.com

80 

currently available IPSEs will scale up to deal with very large projects although systems 
such as DSEE have been used on quite large projects. This, of course, is not to say that 
the currently available IPSEs are without value. 

As the experience with Safra shows there are benefits of using IPSEs and they 
can be applied to the development of high integrity software. At least with the simpler 
systems, ie those that take a conservative approach of simply extending an operating 
system, the benefits outweigh the drawbacks for many classes of project. As the technol
ogy improves the range of projects which can be handled will be extended, hence IPSEs 
can still be seen as having potential and there is hope for their future. However there are 
technical problems which must be overcome before the use of IPSEs can become 
widespread. We have identified some of these issues and tried to illustrate both the com
mercial and research trends. 

Thus we can conclude that environments are already useful, albeit in limited ways, 
and that there are research projects which may overcome some of the limitations. As a 
final point, it is worthwhile considering the role of IPSEs in a wider context. Architects 
(tempered by company management) are responsible for designing the physical working 
environment for software development (and other) staff. An IPSE is essentially the intel
lectual working environment for software development staff. In other words, an IPSE (or 
at least a complete one as outlined in part IT) would provide the environment in which a 
systems analyst or programmer would work for much, if not all, of the day. Thus there is a 
considerable responsibility on the part of IPSE designers to provide a stimulating and 
rewarding environment for its users, and to enable them to feel satisfied with the way 
they are working - not frustrated at fighting the machine. Perhaps, therefore, the ultimate 
design objective for an environment is to provide facilities to enable software designers 
and programmers to work effectively, and pleasurably. This is both a major challenge, and 
a major responsibility, for IPSE designers. 

V.3 ACKNOWLEDGEMENTS 

The view of IPSEs, and in particular the view of integration, outlined in this chap
ter has evolved over a number of years and many of my colleagues have provided useful 
comments and criticism which have helped me to formulate my ideas. Alan Brown and 
Itana Gimenes have been particularly helpful in providing detailed criticism on this partic
ular presentation of the ideas. 

The paper also draws, to some extent, on a number of earlier works on IPSEs. In 
particular some diagrams and text have been extracted from lecture notes on IPSEs 
which were presented at an lEE Summer School on Software Engineering for Electronic 
System Designers held in 1989. This material is used with the permission of the lEE. 



www.manaraa.com

81 

V.4 REFERENCES 

Biba 1977. J K Biba, "Integrity considerations for secure computer systems", ESD-TR-
76-372, ESD/AFSC Hanscom AFB, Bedford, Mass (1977). (MITRE MTR 
3153 NTIS AD A039324 (1977)). 

Black 1987. W J Black, A G Sutcliffe, P Loucopoulos, P J Layzell, "Translation between 
Pragmatic Software Development Methods", in Proceedings of ESEC87, 
eds. H Nichols and D Simpson, LNCS, Springer Verlag (1987). 

Boehml981. B W Boehm, "Software Engineering Economics", Prentice Hall (1981). 

Brooksl987. F P Brooks, "No Silver Bullet: Essence and Accidents of Software Engi
neering", IEEE Computer, Vol. 20 (4) pp 10-20 (1987). 

Clark 1987. A Comparison of Commercial and Military Computer Security Policies, D D 
Clark, D R Wilson, Proceedings of IEEE Symposium on Security and Priva
cy, IEEE Press (1987). 

Cronshaw1986. P Cronshaw, "The Experimental Aircraft Programme Software Toolset", 
Software Engineering Journal, Vol. 1 (6) (1986). 

DeMarco 1978. T DeMarco, Structured Analysis and System Specification, Yourdon 
Press (1978). 

Dittrich1987. K.R. Dittrich, W. Gotthard and P.C. Lockemann, "DAMOKLES - A 
Database System for Software Engineering Environments", in "Proc. of 
IFIP Workshop on Advanced Programming Environments", Springer Ver
lag (1987). 

Dobson 1988. Security Models and Enterprise Models, J E Dobson, J A McDermid, Pro
ceedings of IFIP Workshop on Database Security, ed. C Landwehr, IFIP 
Press (1988). 

DoD1980. DoD, "Requirements for Ada Programming Support Environments: Stoneman", 
(1980). 

Dowsonl987. M. Dowson, "Integrated Project Support with ISTAR", Software pp., 
IEEE, (1987). 

Dowsonl988. M. Dowson, (ed.), "Software Process Workshop", ACM (1988). 

DTI1987. DTI, "The STARTS Guide, Second Edition", Department of Trade and Industry 
(1987) Available from the National Computing Centre. 

Englandl987. D M England, "A User Interface Design Tool", in "Proceedings of 
ESEC87, Lecture Notes in Computer Science", Springer Verlag (1987). 

Erickson 1984. V B Erickson and J F Pellegrin, "Build - A Software Construction Tool", 
Bell Lab.s Technical Journal, Vol. 63 (6) pp., (1984). 



www.manaraa.com

82 

EURAC 1987. Requirements and Design Criteria for Tool Support Interfaces, GIE Emer
aude, Selenia, Software Sciences (1987). 

Feldman 1979. S I Feldman, "Make - A Program for Maintaining Computer Programs", 
Software Practice and Experience, Vol. 9 pp., (1979). 

Foster 1989. The Algebraic Specification of a Target Machine: Tenl5, J M Foster, in High 
Integrity Software, ed. C T Sennett, Pitman (1989). 

Goldberg 1983. A Goldberg and D Robson, "Smalltalk-80: The Language and its Impelem
ntation", Addison-Wesley, (1983). 

Hayes 1986. I. Hayes, (ed.), "Specification Case Studies", Prentice Hall International 
(1986). 

Hitchcock1990 P. Hitchcock and R. P. Whittington (eds.), "The ASPECT Project", (to 
appear, (1990). 

Hoare1985. CAR Hoare, "Communicating Sequential Processes", Prentice Hall 1985. 

Jacksonl986. K Jackson, "MASCOT3 and Ada", Software Engineering Journal, Vol. 1 (3) 
(1986). 

Kitchenhaml986. B A Kitchenham and J A McDennid, "Software Metrics and Integrated 
Project Support Environments", Software Engineering Journal pp., (1986). 

Leblangl984. D B Leblang and R Chase, "Computer Aided Software Engineering in a 
Distributed Workstation Context", in "ACM Conference on Practical Soft
ware Development Environments" (1984). 

McDermidl984. J A McDermid and K Ripken, "Life Cycle Support in the Ada Environ
ment", Cambridge University Press 1984. 

McDermidl986. J A McDermid (Ed), "Integrated Project Support Environments", Peter 
Peregrinus Limited 1986. 

McDermidl989a. J A McDermid, "Software Design Methods: Characteristics and 
Choice", in "Software Engineering for Electronic Systems", ed. A C 
Davies, Butterworth Scientific (1989). 

McDermidl989b. J A McDennid, E S Hocking, "Security Policies for Integrated Project 
Support Environments", Proceedings of IFIP Workshop on Database Secu
rity (1989) (to appear in the IFIP Press, ed. C Landwehr, 1990). 

McDermid 1990. J A McDermid and P Rook, "Software Development Process Models", 
in Software Engineer's Reference Book, ed. J A McDermid, Butterworth 
Scientific (1990). 

McGuffin 1979. R W McGuffm, A E Elliston, B R Tranter and P N Westmacott, "CADES -
Software Engineering in Practice", in "Proc. of 4th International Confer

ence on Software Engineering", IEEE (1979). 



www.manaraa.com

83 

Milner 1980. A J R G Milner, "Calculus of Communicating Systems", in "Lecture Notes in 
Computer Science No. 92", ed. G Goos and J Hartmanis, S:,ringer Verlag 
(1980). 

Mullery1979. G P Mullery, "CORE - a Method for Controlled Requirements Specifica
tion", in "Proceedings of 4th International Conference on Software Engi
neering", IEEE Computer Society Press (1979). 

Paseman1988. W G Paseman, "Architecture of a Tool Integration and Portability Plat
form", in "Proceedings of COMPCON" (1988). 

Ritchie 1978. D M Ritchie and K Thompson, "The UNIX Time-Sharing System", Bell Sys. 
Tech. J., VoIS7 (6) pp.l90S-1929, (1978). 

Rochkind197S. M J Rochkind, "The Source Code Control System", Transactions on Soft
ware Engineering pp., IEEE, (1975). 

Sennett 1987. The Development Environment for Secure Software, C T Sennett, RSRE 
Report 87015 (1987). 

Sloman1983. A Sloman, S Hardy and J Gibson, "POPLOG: A Multilanguage Program 
Development Environment", in "Information Technology: Research and 
Development" (1983). 

Sommervilee 1986. I Sommerville (ed), "Software Engineering Environments", .Peter 
Peregrinus Limited (1986). 

Sutcliffe1988. A G Sutcliffe, "Jackson Structured Design", Prentice Hall, (1988). 

Thimbleby1986. H W Thimbleby, "Experiences of "Literate Programming" using cweb (a 
variant of Knuths WEB)", The Computer Journal (3) pp., (1986).' 

Took1986. R K Took, "The Presenter - a formal design for an autonomous display manag
er for an IPSE", in "Software Engineering Environments", ed. I Som
merville, Peter Peregrinus Limited (1986). 



www.manaraa.com

3 

Reflections on a large software development 
project 

Brian Warboys 
Department of Computer Science 

University of Manchester 
Oxford Road Manchester M13 9PL 

Abstract 

This paper is an attempt to extract some lessons,with some subsequent and very 
personal reflections, from my involvement with the development of the ICL VME Op
erating System. They represent personal views and personal reflections and in no way 
necessarily reflect those of the company. I present them in the hope that they are useful 
inputs to the current plethora of noise surrounding software engineering and its appli
cation. In particular I am concerned that the experiences gained from the lengthy usage 
of an early support environment should yield some input to the present round of in
vestments in Integrated Support Environments. The paper attempts to justify the notion 
that a framework fashioned for Process and Architectural support should be the starting 
point for the development of the core of such an Environment. 
"It takes longer than you expect, even when you take into account Hofstadter's Law" 
[hof]. 

Keywords:Software Deveiopment,Operating Systems 

1 Introduction 

"The writers against religion, whilst they oppose every system, are wisely care
ful never to set up any of their own" (Edmund Burke). 

It is now some 10 years since I ended my direct line-management involvement with ICL's 
VME Operating System [bcw80]. This seems to be about the time it takes to be able to look 
back at those years with an appropriate sense of detachment. However the danger in leaving 
it this long is that any lessons to be drawn from such a period in our modem fast-moving 
technological context have, long since, been rendered irrelevant. The production of this 
paper has unfortunately demonstrated, to myself at least, that this is not the case. It serves 
to illustrate what has been learnt, a great deal, what is yet to be learnt, and perhaps, most 
importantly, what has been learnt but has yet to be properly exploited. 

84 



www.manaraa.com

85 

1.1 On Soft-ness 

The problems, in the main stem from the very term Soft-ware. Most seem to originate 
whenever strenuous efforts are made to deny the very nature of the technology. That is 
the fact that, by definition, it is meant to be Soft. Soft implies malleable and hence in one 
dimension is associated with a perceived low cost of change. Somehow we seem unable to 
reconcile the confict between malleable and manageable. Thus the term Software Factory 
is much in vogue carrying the implication that if we can harden the technology sufficiently 
then somehow it becomes manageable. 

My own opinion is that come the moment when we are, at last, happy that it has be
come hard enough we shall then invent the notion of something softer with once again the 
properties of a low perceived cost of change, albeit in the new factory context. 

In my experience the major conceptual difficulties derive from the strange notion that 
since the technology is soft the definition of its required behavior can be specified in very 
imprecise terms. The softness of the technology allowing rapid redevelopment of the product 
to match the prospective customer's needs. This trend is further exaggerated by the fact that 
most software is used to support management activity of one form or another and hence the 
requirement itself is also extremely soft. 

Such a reasoning process has been raised to an art-form by many advocating the exclu
sive use of Expert System technology in business applications to allow the development of 
systems by successive refinement of operational prototypes "in front of the vendor 's eyes". 
This process continuing until the customer exclaims that he is happy! I recall hearing about 
a similar reasoning process during a discussion with a town planner, long ago, when he was 
explaining to me the design process that led to the development of tower-block housing. 

There are two separate activities which are intertwined in all this preamble. One con
cerned with process and one with technology. They are often confused. This small case 
study will, I hope, shed some light on that confusion. It is my contention that we (the soft
ware community) have never adequately separated these concerns and that this is at the root 
of many of our present difficulties. 

In particular there exists considerable confusion about the term integrated . It is used 
very loosely to both describe the integration of a set of tools to provide a coherent product and 
the notion of support for an integrated development process which includes supporting tools. 
The former emphasis on tools integration and the unfortunate separation of the concerns of 
the tools from the products produced using the tools tends to de-emphasise the paramount 
importance of the methods which the tools support in favour of the tools themselves. It is 
an unfortunate attribute, possibly of our current market economy, that there is a tendency 
to market tools as discrete entities rather than as contributors to a continuous development 
process. The paper attempts to justify the need for a more coherent approach. 

2 A review of the historical perspective of the VME project 

These reflections, given the current context, are inevitably dominated by observations on 
the experiences gained by the use of a form of Integrated Support Environment for the 
development of the system throughout the best part of two decades. The environment in 
question is known as the CADES [djp, bcw76] system and has been used since 1972 for the 
support of the development of the ICL Operating System VME [bcw80]. Not surprisingly, 



www.manaraa.com

86 

given its age, this system accurately reflects the industrial concerns prevalent in the late 
1960's. The focus on these concerns was due in no small measure to the two successful 
(well they were perceived as such at the time) NATO Software Engineering conferences of 
1968/69 [jnb, pn] which are arguably responsible for the very term Software Engineering. 

Examination of our experiences with this system over the last 16 years lead to some 
interesting observations on both what has changed and unfortunately what has not during 
this period. The observations fall into two categories : 

- The Industrial Scenario and development concerns of that era. 
- The Technology developed to address those concerns. 
Perhaps more than anything they are timely reminders at this time, when there is an 

unseemly rush to standardise Support Environments, that our engineering expertise is still 
far from being mature. They show us how much has changed (and has still to change) in 
even our understanding of the Software Development Process. This must lead to concern 
that in the realisation of the need for an "OPEN" standard we should not hastily define a 
very closed system. 

2.1 Our Industrial Scenario in the early '70's. 

Prior to the early 70's ICL (in its various early forms, English Electric,ICf etc.) had pro
duced a number of comparatively small operating systems and associated compilers for the 
relatively small mainframe machines which existed at the time. 

These systems were produced as discrete components and as they gradually grew larger 
the approach was essentially to treat the enlarged components as collections of programs 
and to contract out the development of the programs to separate groups of programmers. It 
was found that this approach was inadequate. Indeed that the cost of the systems compared 
to earlier systems increased exponentially rather than linearly with their increase in size. 

Thus in 1971 when ICL set out to produce a major operating system, VME, for its new 
range of Mainframes (what became the 2900 and the Series 39 ranges) it recognised that 
it had a major task on its hands since all the indicators were that the development would 
never finish. In a sense this has proven to be the case since some 200 development staff 
have been continually developing the system since that time. The result was to establish a 
development support project to develop a rigorous system development methodology, Struc
tural Modelling, and a Computer Aided Development and Evaluation System, CADES, to 
support the methodology. 

2.2 The perceived problem circa 1970 

At that time the problem was perceived as being dominated by product structure concerns. 
Early documents [bcw76] state : 

"The large development team would need to be able to identify and preserve 
the overall structure of the operating system. Experience on earlier systems had 
shown how difficult it was to protect a large system from structural decay. The 
team would need to be able to distinguish between features which affected the 
overall structure of the system and those which were merely cosmetic. 



www.manaraa.com

87 

The methodology and computer aided system would have to facilitate all stages 
of the operating system development process, i.e. high level design, low level 
design of implementation, construction, system generator and maintenance. They 
would have to encourage the codes of good practice which prevailed within the 
computer industry, i.e. structured programming, data/entity driven design, de
layed fixing and binding, design for resilence etc." 

Two years later, in a much earlier reflections paper [bcw78] on the problems of develop
ing large software systems, I was to draw the following observations/conclusions on our 
approach. 

"There are a number of points that experience in the development of large and 
complex software systems highlights: 

• The importance of determining a good structure for the system and record
ing this structure and its history. 

• An ability to be able to invert the product structure to provide the diverse 
views required by external requirements. 

• Allow the product structure to determine organisation structures. 

• A need for strict control over system versions. 

• Interfaces which are flexible but can be tuned allowing scope in develop
ment for effective customisation. 

• A continuous design! implementation! integration process because of di
verse organisations. 

• A central definition of the system and its variants to provide control." 

2.3 Observations on this view of the Perceived Problem 

Reflecting on these perceptions which were produced "in the heat of battle" - not an un
realistic analogy given the intensity of management and technical interactions which result 
from the undertaking of such a venture - it seems that there are four separate strands which 
emerge: 

• Architecture and Product Structure 

• System Representation 

• The Development Process 

• Implementability/Testability of Product 

2.3.1 On Architecture and Product Structure 

To a large extent our emphasis on the avoidance of "structural decay" has paid handsome 
dividends. This is due in no small measure to the early work done in the then ICL New 
Range Planning Organisation [jkb] in creating an Architectural Framework for what was 
to become the 2900 (and then Series 39) systems. This was in place before our Operating 



www.manaraa.com

88 

System design began and we merely needed to decide on our complementing Architecture. 
From the beginning I recall that design discussions were soon punctuated with protestations 
of "That's not architectural" and the design group soon developed an intuitive and shared 
understanding of the required architectural constraints. This has lasted throughout the two 
decades of development and one cannot overstate the importance of such an understanding. 

It is my experience that the primary cause of failure in developing large systems is the 
absence of such a strong sense of an architectural framework. In this sense I am using the 
notion of Architecture as being : 

• the constraints which must be obeyed by a component to ensure that it is integrable 

• the rules of composition which ensure that when components are taken together they 
also form an integrable component. 

This view of Architecture, as an active framework for design is an important topic, not yet 
adequately addressed even in the research domain. We have been developing some thoughts 
on this topic and it is explored in a little more detail in a recent paper, [ph], on the subject. 

However the existence of a strong architectural model did not enable the effective re-use 
of components, be they designs or implementations. This problem is wider than architecture 
and I shall return to it later in the paper. 

2.3.2 On System Representation 

The naive development route hinted at in the quotations in 2.2 above contained no mention of 
the process of Specification. This is perhaps the most significant change in our understanding 
of the means of Software Engineering which has emerged over the last decade. Our "top
level" activity was termed Design. Specification was an informal process, although not in 
the sense of being unstructured. In fact the process was extremely well structured in terms 
of Requirements definition, Facility Design, Module development implications etc. It was 
informal in the sense that its outputs were English narratives. 

The process was useful but suffered from a "Write many-read once" property. That is 
great insight was generated as a result of narrative production and, I believe we were in the 
vanguard of those introducing formal inspection techniques, but it was virtually impossible to 
use the results as a systematic means of control for the refinement of such specifications into 
implementations. To achieve this important property in ensuring the means of a "continuous 
development process" we would have needed to adopt a more formal mathematical approach 
(e.g. [cbj86]). Unfortunately the important tools and expert support were not available to 
us and to a large extent are still not. Until such support appears (hopefully during the next 
5 years) widespread use of such techniques will not become the norm and we shall continue 
to suffer the consequences of inadequate specification processes. 

2.3.3 On the Development Process 

The emphasis on "a continuous ... process" was, and is, of paramount importance. Much of 
this was achieved by the development and use of the CADES system. The inadequacies, such 
as they were, were in my view due to the emphasis (admittedly my own) on product structure 
as the prime determinant of all control. This emphasis ("allow the product structure to 
determine organisational structures") in both process and product was I now believe too gross 



www.manaraa.com

89 

an over-simplification. Although it does have the merit of being a good simple management 
message. On reflection I would now argue that we must recognise that the development 
process for systems of this complexity is going to be a heterogeneous assemblage of differing 
process fragments. That the regularity required for consistency should come from the twin 
frameworks of some form of support for active Architectural Constraints and a Development 
Process Harness which together allow for the embedding of differing sub-components be 
they product structures, language representations or management processes. We are currently 
experimenting with such notions within the Alvey IPSE 2.5 Project [ras1], [bcw89]. The 
impact of such a Support Environment is discussed later in this paper. 

A significant aspect of "a continuous ... process" was the mid-life introduction of the 
constraint of incremental development. The key feature was the vision of developers, at in
dividual module levels, being able to release product increments, after significant regression 
testing, directly into operational systems. Although the vision was never fully implemented, 
and possibly should never be, it acted as a simple management device for focussing atten
tion on the means of moving away from large development increments with all the attendant 
problems that such batching implies. The effects were all-embracing and had a good influ
ence on all stages of the development process. The emphasis, from requirements through 
design to implementation being on the need to preserve system integrity in a very direct way. 
In this sense it was the management analogue of architectural constraints. It is a classic ex
ample of the need to construct frameworks for development consisting of simple messages 
at both architectural and process levels. 

2.3.4 On Impiementabilityffestability of Product 

"We may have invented immortality but it will take forever to test it!" or again as Djikstra 
remarked at the 1969 NATO Conference [ewd] "Testing shows the presence, not the absence 
of bugs". The previous remarks on representation are relevant. The absence of systematic 
refinement of specifications leads in the end to the problem of testing. The well known 
(for some 20 years) relationship between cost of error correction and the development phase 
of discovery (that the later it is found the more it costs to correct) serves to underline this 
link. There is no doubt that the single largest cost to ICL and the VME customers was the 
revalidation of releases and the cost of non-conformance caused by the non-confirmation of 
the "absence of bugs". 

I can only re-iterate the links between the front and back-end phases of the life-cycle. 
The role of language (and representation) in all of this is very clear. The bold, for that 
time, decision to write VME in a real high level language (see below) and provide extensive 
module-interface support with CADES led to the formal "absence" of whole classes of errors. 
This is a clear pointer to the solution to the problems in specification and its refinement. 
For the last decade we have been experimenting with more formal approaches and we are 
certainly nearer to acceptable solutions than we were! 

3 Structural Modelling and the CADES Approach 

Structural modelling was first described in detail in [djp] in 1973. It followed the philoso
phy that system development should be primarily a data-driven top-down process. We had 
digested the lessons from the NATO conferences! 



www.manaraa.com

90 

The emphasis was on the modular structure of the system being designed to manipulate 
defined data items, rather than data items being invented to support the encoding of ab
stract functional requirements. Each code entity was termed a holon, a term borrowed from 
Koestler [ale] to describe utilities in an hierarchic system. 

A language called SDL (System Development Language) was devised to allow the ex
pressions of holon-holon and holon-data relationships. It should not be confused with the 
SDL of the CCnT recommendation SDL-88; they are unrelated. SDL is also used to de
scribe how each holon uses its relationship with other holons and with data items in order 
to carry out its particular functions. The hierarchy of SDL Holons represents a gradual re
finement of the total description of the system,each level being a complete description of the 
system at that level of design, the level being fixed by the accompanying data tree decom
position. At the lowest levels this use of SDL merges completely into the implementation 
programming language, S3 (a close relative of the expression oriented language AlgoI68). 

The CADES database was set up to record information about the various holon-holon, 
holon-data relationships and this was then used as the basis for version control and other 
management support purposes. It had become, of course, a Support Environment. 

By far the most important development was that the database was established from the 
very beginning of the project as the only source of all product components. Source code 
could only be produced by the execution of an Environment Processor (the EP) which pro
cessed design information from the database to produce S3 source code. An early example 
of process enforcement through the use of tools. 

3.1 Observations on the CADES Approach 

Within the size and scale of this paper it is only feasible to attempt a very superficial analysis 
of the approach but the more significant highlights are : 

• The approach is based on the notion of constructing a multi-level model of the product 
to be developed and then using this hierarchy as the means of development manage
ment. This, of course, reflects the aforementioned strategy of emphasis on product 
structure as the means of control. This leads to some good and bad attributes. The 
best is perhaps that the architecture of the system plays at least some active role in the 
subsequent design decomposition. The theology of the product approach is reflected 
directly in the tools used for development. Thus both the architecture and the tools 
system have survived the test of time. Essentially the same system is still used 16 
years and some 3000 man years later. It has demonstrated that Support Environments 
can have longevity! 

The worst attribute is that the process of development is necessarily made subservient 
and thus although the product has not suffered structural decay the process of develop
ment has not been able to adapt properly to more modern influences at both language 
and technique levels. As was mentioned before it is particularly noticeable that the 
"total life cycle" outlined above made no mention of specification. Further the gran
ularity of the database is product oriented and thus the granularity of the supported 
process is of necessity constrained to the level of the product modularity. Manage
ment of the process is therefore conducted at the holon level. Re-use, optimisation, 



www.manaraa.com

91 

version management and all the other Engineering concerns are thus also constrained 
to operate at this level. 

• The approach is essentially one of "Structure design followed by structure evaluation". 
Support for iteration is provided but essentially the system is oriented towards design 
capture of new and modified functions followed by the use of conventional (Codasyl 
based) database technology to invert and evaluate that design. The notion of proto
typing is missing and the ability to reason about the design is essentially restricted to 
structural analysis. 

Again the primary goal of managing the avoidance of product structural decay was 
realised but the granularity of design entities essentially restricted the ability to reason 
except at holon-holon level. In practice abstraction was limited to essentially estab
lishing a functional scope for subsequent holon decomposition. 

• The system is a closed one. Not really in the sense of current Open Systems concerns 
since one could easily define a "Public Tools Interface" to the system but in the sense 
that any tool added to the system is constrained by the core style of schema representa
tion. New tools have to be totally integrated and the resultant costs severely restricted 
the ability to experiment with new toolsets, to rapidly discard and acquire new tools 
and generally to adopt a flexible tools strategy. 

• Many mundane issues are of fundamental importance. In the end most development 
effort on the CADES system was expended on Version Control and it is clear that it 
is of paramount importance that such issues are addressed in such a way that they are 
all embracing and transparent to tools providers. 

3.2 Subsequent conclusions for the future 

• It is clear from the above that the principal constraint to a flexible support environ
ment is, not surprisingly, the basic architecture of that environment. The environment 
is after all, itself, a product and hence the previous remarks concerning the role of 
architecture are clearly appropriate. Clearly, given that the ultimate goal in the build
ing of con/ormant systems is that there is a seamlessness between the architectural 
constraints actively applied throughout development and those applied to the run-time 
system, there is an important relationship between the architecture of the development 
environment and that of the developed system. 

Such a link has much to do with the language used to express designs but clearly the 
architecture of the development environment needs to be based on some alternative to 
a product-structure base since there is little commonality in the range of products we 
would wish to develop at this level. 

In our case the decision to base the granularity of the database at a predominantly 
holon level had an all-embracing impact on both the approach to an open tools policy 
and to the type of development process which the tools enabled (and/or supported). In 
fact the decision to base the environment core on the granularity of the entities to be 
developed was the key factor. Our experience is that any attempt to base the Support 



www.manaraa.com

92 

Environment on the entities to be developed rather than the process to be used for the 
development is doomed to the same constraints as the CADES system imposed. 

In particular we should now take the view that it is axiomatic both that software devel
opment is an iterative process and that this process should be managed and changed 
actively rather than as a transparent side-effect of the product or organisational struc
ture. This implies the need to support considerable process change as development 
proceeds. Moreover it is now clear that this process is, in practice, a collection of 
separate process fragments rather than being a simple coherent development cycle. 
The attempts over the last 20 years to produce a single simplistic representation of 
the software development cycle have not served us well. They have merely resulted 
in an over-simplification. The approach has had the effect of actually increasing the 
separation of the real process from that perceived by the management system. 

The result, in many cases, has therefore been to establish a more impractical process 
than previously existed. Further the dynamic and heterogeneous nature of the process 
has not been recognised and this has had a negative effect on many well-intentioned 
engineering improvements. The provision of an attractive workstation interface to 
such simplistic process models will, I am afraid, only delay not cure the sense of 
disillusionment with such systems . 

• The "Structure design then structure evaluation" strategy of CADES had highlighted 
the constraints on better approaches to development. In particular the need to reason 
about our specifications, designs, implementations is fundamental to good software 
development. This ability to reason implies a level of integration of process and tools 
which needs to be detennined by the nature of the interaction between the reasoner and 
the tools and not by the product modularity constraints. As workstations increase in 
power with improved screen and "tactile" support so the notion of a reasoning assistant 
will become increasingly tractable [cbjl]. However it is also clear that the Environ
ment is still required to support the conventional level of granularity as represented in 
the CADES system. 

A major influence on software support systems should therefore be the desire to 
achieve the integration of these coarse and fine grain support systems. There are 
also implications on the user interface in tenns of the management of vast quantities 
of fine-grain entities and their subsequent projection via coarser-grain entities, for ex
ample to allow the browsing of entities of management interest such as plan impacts. 

• The closed nature of CADES had highlighted the constraints which such an architec
ture placed on flexible tool acquisition and disposition. Increasingly there is a need 
for greater flexibility in creating hybrid design processes and this implies flexibility 
in levels of tool integration. A simplistic "Operating System" style CASE will not, in 
itself, by concentrating on the store-pIus-tools level of integration enable the rapid con
struction of Integrated Support Systems as distinct from the support for heterogenous 
tools systems. OPEN systems imply a speed of change as well as community-wide 
ownership. It is important to ensure that the community wide ownership desire does 
not inflict upon us a closed system in tenns of development paradigms. 

Thus another major influence ought to be the desire for the process based core to be the 
means of flexible and very cheap alien tool interworking, essentially a generic "meta" 



www.manaraa.com

93 

Public Tools Interface. Hence it is considered of vital importance to an Open CASE 
system that it provides a standard means of construction of Public Tools Interfaces 
rather than anyone Interface per se . 

• The notion of Component Re-use had been an early motivator in the CADES system. 
The hope was that by the use of Database support a generic approach to "Libraries" 
could be developed, indeed that such commonality would be established at many lev
els. In practice this did not happen. The means of Specification and then subsequent 
browsing were not available, but again, even if they had been, the fine-grain integra
tion which such "pattern-matching" implies would not have been realised by a totally 
"entity"-based core. Again some support for the recognition of the development pro
cess in order to enable re-use was required. It was also clear that the development 
process was such that the re-use of process fragments was as great a contributor to 
productivity as any design component re-use. CADES did not aid the long period of 
gestation concerned with the construction of a process,in many cases a heterogeneous 
assemblage of sub-processes, to solve large scale problems. This need to employ a 
variety of solution strategies in any given system development is, I believe, of great 
and growing importance. 

4 On future Support Environments 

The purpose of these kinds of Support Environments is to provide the means by which the 
process of developing, maintaining, supporting and enhancing information systems is made 
more efficient, in both quality and productivity terms. Traditionally such Environments, be 
they for the support of programmers or the support of projects, have been considered as tools 
to support people who have tasks to carry out.The view we should take is to stand back from 
this position of "users and tools" and consider the problem as a whole. 

The process of developing, installing and changing information systems is one which 
involves the co-operative efforts of many people. People are involved in this process because 
of the intellectual nature of the various tasks. We should not forget that no tool, as yet, can 
remove the essential involvement of the human being. As Dijkstra [ewd] said in 1972, 

"We shall do a much better programming job ..... provided we respect the in
trinsic limitations of the human mind." 

The next generation of Integrated Product Support Environments (IPSE - a term coined by 
the Alvey programme [alv]) should be the means of supporting the whole process rather 
than just being a collection of tools which assist particular activities or classes of activities 
within that process. 

The essence of the integration component of an IPSE should be based on this notion 
that an IPSE is about supporting the process of systems development, a process in which 
people (the "users" of the IPSE) playa very significant part. In many ways this is the 
logical successor to systems such as CADES where the environment is seen as providing 
the components out of which the process is formed, but in a completely general way which 
is ignorant of process. 



www.manaraa.com

94 

5 Conclusions 

To understand the relevance of such a generic approach based on the notion of a core system 
providing support for a process framework rather than the stylised "operating system" core, 
beloved of many CASE offerings, there is a need to examine the current context within 
which we need to engineer software. 

Major changes have taken place in the industry structure, the technology and the market 
since we developed the CADES system. Most of these emphasise the need for an Open 
system, in a Process sense, and in terms of flexibility of Tool interworking. 

The Industry is, in general, no longer concerned with the development of discrete soft
ware components. Instead the major concern is with the "glueing" together of components 
to provide the IT component of some larger ecosystem. There is a need to recognise the 
endemic nature of IT, to recognise that our traditional software component is but one com
ponent of a much broader control system. 

Further there must be a recognition of the need for the support of mixed componentry, 
much of it never to be specified in terms to which our software development methods can 
sensibly relate. There is a need to recognise the ever increasing variety of methods, languages 
and toolsets, to recognise the need for support for system development "in the large" and for 
component re-use of a wide variety of component types. 

In particular this paper has attempted to highlight the need for a support framework con
taining support for the embedding of some representation of architectural constraints together 
with a form of process model harness as being of paramount importance. It has attempted to 
justify the need for such support in order to enable an approach to system development based 
on the recognition that the development processes dealing with a heterogeneous assemblage 
of process and components are rapidly becoming the norm. 

6 Acknowledgements 

I am indebted to all the people involved in the VME development who provided me with 
such splendid support during my time with the project. I am further indebted to both ICL 
and the University of Manchester for allowing me to pursue the recent stages of my career 
with ,as it were, the very best of two worlds, those of Industry and Academia. The mix of 
the two has had a substantial effect on my reflections in this paper. 

References 

[ak] A.Koestler "The Act of Creation" Macmillan 1964 

[alv] Alvey Programme Software Engineering Strategy, November 1983 

[bcw76] B.C.Warboys and G.D.Pratten "CADES - Principles" Seminar Oxford University 
February 4th 1976 

[bcw78] B.C.Warboys "The Manufacturers Problem in producing large Operating Systems" 
Paper presented at lEE meeting on The Design and Performance of Operating Systems 
London 9th Feb 1978 



www.manaraa.com

95 

[bcw80] B.C.Warboys "VME/B a model for the realisation of a total system concept" ICL 
Technical Journal November 1980 

[bcw89] B.C.Warboys "The IPSE 2.5 Project: Process Modelling as the basis for a Support 
Environment" Procs Software Development Environments and Factories Conference 
Berlin May 1989 

[cbj86] C.BJones "Systematic Software Development Using VDM" Prentice-Hall 1986 

[cbjl] C.BJones and R.Moore "An experimental user interface for a Theorem Proving As
sistant" IPSE 2.5 document SEI3/29/234 

[djp] D.Pearson "CADES" Computer Weekly,July 26th,August 2nd,August 9th 1973 

[ewd] E.W.Dijkstra "The Humble Programmer" CACM No 1O,Vo115 1972 

[hof] D.Hofstadter "Godel,Escher,Bach : an eternal braid" Penguin Books 

[jkb] lK.Buckle "The origins of the 2900 Series" ICL Technical Journal May 1978 

[jnb] J.N.Buxton and B.Randell "Software Engineering Techniques" Report on NATO Sci
ence Conference October 1969 

[ph] P.Henderson and B.c. Warboys "An architectural framework for systems" ICL Tech
nical Journal May 1989 

[pn] P.Naur and B.Randell "Software Engineering" Report on NATO Science Conference 
1968 

[ras1] R.A.Snowdon "IPSE 2.5 Technical Strategy" IPSE 2.5 project document 060-00131-
2.2 



www.manaraa.com

4 
A LARGE EMBEDDED SYSTEM PROJECT CASE STUDY 

Bob Malcolm 
Malcolm Associates Ltd 

Savoy Hill House, Savoy Hill, London WC2 

ABSTRACT 

This paper presents a discussion of why large software projects go wrong. It attempts to 
cut through the swathes of myth and misrepresentation, and to dig deeper than the press and 
other superficial pundits. The various commonly quoted sources of disaster, and especially 
'the software' , are analysed in the context of a case study which is representative of the 
typical 'project disaster'. It is shown how bad design decisions are made not because 
people are stupid, technically incompetent, using the wrong technique, or badly managed, 
but because they are people - operating in an environment which encourages parochialism 
and petty politicking, and afflicted by perversity. 

INTRODUCTION 

Embedded real-time systems typically comprise chains of different types of information 

processing in and out of a central computer-based information presentation and decision 

support system. The input chains start with analogue signal processing of the raw data from 

'front-end' sensors, followed by digital signal processing, and then the digital data 

processing of a computer-based system, which may have associated digital electronics, such 

as operator work-stations, often purpose-built. The output side is much the same in 

reverse, starting with the computer-based system controlling digital, possibly 

microprocessor-based, sub-systems which in tum control analogue actuators and 

transmitters. This is a greatly simplified picture of just the primary information channels of 

a system. In addition there will be many subsidiary control loops comprising 

special-purpose digital circuitry and perhaps several microprocessors within each box. 

The case study project was for the bespoke development of just such a system. 

96 



www.manaraa.com

97 

Apparent and real causes of problems 

After the disaster come the recriminations - attempts to apportion blame to the design, the 

design method, the designers, or the management of the project: 

"Whose fault was it? It must have been a bad design. They must have used poor (ie 

Not Invented By The Critic) design techniques. They should have had a quality 

management system. The whole thing was mismanaged wasn't it? It must have been the 

software, mustn't it?" 

And, of course, there is much argument over the requirements. "Did they or did they 

not keep growing?; did they or did they not keep changing? Was it really the customer's 

fault?" 

"How could they do it?" 

But there isn't a 'they'. Thcyare individuals, usually well-qualified, 

well-intentioned, well-motivated - at least as competent as their critics. 

The body of this paper examines the requirements, the design, the quality assumnce, 

and the management of the project, looking at both the commonly blamed problems and the 

real problems. This is followed by an analysis of the underlying factors which created the 

environment in which the technical difficulties arose, and an attempt to dmw some 

still-tentative conclusions. 

REQUIREMENTS 

Well, did the specification grow like Topsy? Yes .... and No. Towards the end there was 

a fairly typically bitter contmctual battle which led as usual to all parties leaning on the 

written word, whatever had been the spirit and intent of the contmct. The customer went 

back to the original few pages of outline requirement, which was the basis for the proposal 

and thence the contmct, and say that it had not changed. Indeed it had not: but the 

requirements had moved on somewhat. Apart from official contmctual changes, the 

actuality of the requirements - the fleshing -out and interpretation - was embodied in a myriad 

documents, designs, undocumented decisions, and assumptions. Nevertheless, and 

perhaps as was only to be expected in such a difficult situation, the customer, publicly at 

least, flatly denied the relevance of anything outside the original flimsy statement. 



www.manaraa.com

98 

In fact, very early in the project it was recognised by both customer and supplier that 

there were likely to be problems with the requirements. They decided to establish a group to 

resolve uncertainties. It was to be small, so that it could make decisions vel)' quickly, with 

only three parties represented - end-user, supplier, and customer's technical advisers. 

The road to a project disaster is also paved with good intentions. Ten years later this 

small, fleet, group had become a committee with over a score of customer representatives 

from various departments. It met every six months. So the multi-humped camel was born, 

though really it never got beyond gestation since, by this time, what was actually happening 

on the project bore little relationship to the formal committee statement of the long-term 

requirements. 

What about the software requirement specification? 

During tests and trials with the real hardware in a real environment, there were 

reports back from both the customer and the trials team that the software was not coping 

well with the demand. The software team tried to ameliorate the problem with a series of 

changes, but this 'software problem' did persist. Only when one of the managers who had 

been involved in the early design work became involved did reality reveal itself. The 

demand with which the software was having difficulty was more than two orders of 

magnitude greater than the design target. A software problem indeed! 

But the supplier should not be complacent in a situation like this. The software might 

well satisfy the software requirement specification, and in the case study dramatically beat it. 

The hardware might even have met its specification, though it did not in this case. But if the 

real world load is greater than expected, then the customer will not be happy if the supplier 

tries to hide behind the specification. In the case-study project, the whole system would 

have been quite useless if the software had simply met its specification. The supplier might 

have a legal case, but if it comes to an argument, then the battle is already half lost and a 

disaster imminent. 

This is yet another case of the distinction between meeting the specification and real 

quality - providing customer satisfaction. 



www.manaraa.com

99 

DESIGN 

Design philosophy 

We must take care to distinguish between the design philosophy and the actual design. The 

software philosophy was simplistically expressed at the beginning as "1. Don't rush (ie 

don't introduce into the design unnecessary real-time constraints); 2. Do only one thing at a 

time". In essence this meant message-passing, interrupt-free, design - some years ahead of 

its time. 

The philosophy worked well. The first build of the system integrated successfully 

in one week, rather than the expected three months, much to the surprise of the software 

manager who had not been in favour of this newfangled philosophy. 

But the ultimate vindication must surely be that although it was creaking badly, the 

system did actually cope with more than one hundred times the original expected data rate, 

with a consequent combinatorial explosion in some aspects of the data-handling. 

However, there were indeed some horrors in the actual design of the "How could 

they?" sort. And there were some design decisions which have since been criticised but 

which were well-founded at the time. Which is which is usually clear: but not always. 

Some of each type will be recounted in this section. 

Hardware-software interface 

One of the ways to 'avoid rushing' was to buffer data. There were therefore large 

'software' buffers in the main computer, to temporarily accommodate input data which did 

not need an instant response. In addition there were buffers in the hardware lines, prior to 

transferring data into the main computer. But the function of these hardware buffers was 

slightly different. When they were not full, they acted simply as buffers. But, unusually, 

they were kept as small as possible, consistent with not losing data under normal 

circumstances. This provided a simple and cost-effective counter-measure to spurious 

unmanageable surges of noise. The idea was that the little hardware buffers would be 

deliberately overwritten in the event of such surges - and there a lot of these in reality. In 

this way most of the noise would be lost, and the main computer would not be overloaded. 

(Some real data would be lost as well but not, relative to the noise, a significant amount, and 

it was better to let the computer spend its time processing clean data from less noisy areas 

than clog it up trying to sort wheat from chaff with a low probability of success.) 



www.manaraa.com

100 

Years later there were some problems with the main computer servicing of its 

buffers. It transpired that, somewhere along the line, the software manager, finding that he 

was running out of store, had persuaded the hardware team that the hardware buffers should 

be expanded, so that the software buffers could be shrunk. Now, not only was the 

hardware not limiting noisy input data, but the main computer had less capacity to absorb 

the load. Is it any wonder there were problems? 

A box too few 

Fairly early in the project it came to light that a major function had been completely left out 

of the initial design. Its natural place lay between the digital signal processing and the digital 

data processing. Between is right: it transpired that both the design managers responsible 

either side had assumed that the other had dealt with it. They sat in adjacent offices, could 

not stand each other, did not talk, and certainly failed to communicate. 

Despite recognition of this oversight, the effect persisted. Years later, in trying to 

sort out some interfacing problems, it became clear that the missing functionality had been 

'bolted on', along with some other forgotten bits and pieces. 

It had, for instance, been a stated starting assumption of the software team that there 

would not be spurious multiple copies of the same input data, and also that the data would 

already be sorted on arrival. Both of these assumptions were 'remembered' - ie 

rediscovered - when the serious effect of them not being satisfied became evident. Again, 

these functions had been belatedly 'bolted on' in another peripheral processing unit. 

But by this time such inelegances were everywhere as people and teams optimised 

their own sub-system at the expense of others and the whole. Sometimes they were 

grabbing responsibility for functions from others - either to build empires or because the 

new bit was technical fun. Sometimes they were dropping responsibility for functions to 

reduce the load on themselves and on the processing capability in their bit. 

A box too many 

And sometimes these things happened for no obvious reason at all: thus it was with the 

interfacing unit. This box was originally devised as a solution to the interface limitations of 

the first main computer. Again, quite late in the project there were some technical 

difficulties. The design team eventually called in help so as to better understand the function 

of the unit. Again, only when one of the old hands became involved did he realise that this 

box was still in the system. The original computer had been replaced some years previously 



www.manaraa.com

101 

by one with far superior interfacing capability, completely obviating the need for the 

interface unit. 

"We'll just do it in the software" 

There were a lot of other interface problems, with both the main computer and with the 

subsidiary microprocessors which had sprung up throughout the system. Often the 

hardware engineers relied on 'doing in the software' jobs which would be simple in 

hardware but horrendously difficult and expensive in software. 

There were wires soldered the wrong way round, so that the least significant bit was 

where the most significant should have been and vice versa. ("Is bit 1 or bit 16 the most 

significant bit? - or should that be 0 or IS?,') The software was expected to turn every data 

word coming across that interface back to front, bit by bit. 

Elsewhere some microprocessor software received data from a specially built 

keyboard. Now, electromechanical keys have a tendency to 'bounce' for several tens of 

milliseconds after being pressed. The effect, if not handled properly is to generate a stream 

of spurious data. It had been common practice for years to build in simple 'contact 

debounce' circuitry at the interface. Later this became encapsulated in standard chips. But 

in this case the hardware engineer did not know about them, or forgot, or couldn't be 

bothered to use them. So the software was expected to do 'contact debounce'. It is possible 

in software, but it is very painful. 

Elsewhere again, in another microprocessor, the software was 'thrashing'. It was 

having to inspect an input channel so frequently that it had no time to do any actual 

processing of the data. The software team were struggling, being criticised by the hardware 

team for poor performance, until the fight got so bad that yet another old hand was brought 

in to referee. It turned out that the hardware team had failed to put in a one word register as a 

buffer which would have latched the data - stored it temporarily until the processor was 

ready. 

But one of the biggest interface boobs of all concerned the distribution of peripheral 

functions from the main computer to local subsidiary processors. Even before the 

availability of microprocessors such distribution had been part of the design philosophy. 

The approach was then novel and well-publicised, being presented at international 

conferences. 



www.manaraa.com

102 

The original, and well documented, design concept, was that each packet of data 

should have an identity related to its source. This identity would be passed to the subsidiary 

system. When the subsidiary system required more information from a particular source, it 

would request it from the main computer, referencing this identity, making it a fairly simple 

matter for the main computer to find it. Nowadays we would talk of 'object oriented 

design', but again this project was ahead of its time. 

Unfortunately, as the project progressed and personnel changed, a hardware 

engineer, in order to save a small amount of store, decided not to bother to save this 

identity. So the only information passed back to the main computer was the value of some 

of the data already sent. The main computer then had to work out from which of several 

hundred possible sources of data this packet had come. 

The original concept was intended to simplify the interface, and reduce the 

associated processing so that it was virtually negligible. The consequence of the actual 

design was to bring the main computer to a near standstill. (Later this was rectified, to some 

extent.) 

Yet another example of corporate forgetfulness, despite clear documentation, 

concerned the Built-In Test Equipment (BITE). Simplifying, this takes two forms. Static 

BITE is a facility to monitor such things as voltages in analogue circuitry, to ensure that 

components are operating properly. Dynamic BITE often requires some input-to-output test 

to check that the functional operation delivers expected results. The need for both was 

recognised and an outline approach documented. It was pointed out that the dynamic BITE 

needed further consideration. It got it - but years later, after the kit had been built without it. 

Good programming practice 

Moving onto the software design per se, the problems were different, but just as perverse. 

Only when a new programmer had to amend an old module of someone else's code 

did its rather curious structure come to light. The input to the module was a single piece of 

data, together with a number. The data was to be placed into a table of data. The number 

was a pointer to the right place in the table. 

This job couldhave been done simply with just a single program statement (an array 

assignment). Instead of which it went on impenetrably with a long chain of irs and then's: 

"If the pointer value is one then put the data into the first place in the table else if it is two 



www.manaraa.com

103 

then put it into the second place else if ... " and so on for half a page. (Luckily the table did 

not have a million entries!) 

Of course, the programmer of the original had thought that he was simply following 

the company's very thorough and copiously documented structured programming rules. It 

is rather like someone, having been told that the shortest distance between two points on the 

globe is a great circle, sets off from London to Brighton - heading north. It is a great circle, 

but... 

More seriously in effect, it was realised quite late on that at least ten per cent of 

machine time was spent shuffling unused - that is not worked on - data about the main store, 

ending up unchanged exactly where it started. This was discovered only when a 

performance analysis was done to see where processing time might be saved. But it had not 

been done unknowingly. The particular designers thought that it was 'good' programming 

practice to make local copies of data which might be needed, before execution of a 

subprogram. Indeed that is what some of the text-books taught. But nobody at the time 

saw, directly, the effects of this 'good' design. And who would have thought that they 

would go one stage further and copy it all back again after it had been 'used' (ie, usually, 

notused). 

Estimates and resources 

On the general subject of estimation and performance, this project was much like any other. 

The estimates for the requirements which had been the centre of attention during feasibility 

studies were not too bad. But lurking beneath the waterline were the other nine-tenths of 

boring, forgotten, and late-coming bits. For instance, the estimate for one suite of 

'subsidiary' software facilities was sub-contracted out to a firm of software specialists. The 

store estimate was 200 words. Ten years on it was 600K and rising daily - now two-thirds 

of the total main computer store requirement. 

Partly because of the performance problems, the choices of computer and 

programming language both came in for criticism. Apart from upgrades, there was one 

mid-development change of main computer type. At that time there had been some support 

in the supplier organisation for shopping abroad. But there was then a clear and 

well-documented instruction from the customer to "Buy British". Interestingly, this seemed 

to get forgotten during the later recriminations. 



www.manaraa.com

104 

By the end of the project the programming language chosen was considered by 

many to be passe. But at the beginning it was the only available high level language for this 

type of application. It was also the customer's standard. It was ahead of its time - so far 

ahead that an appropriate compiler did not exist at the beginning. And throughout the 

project there was a running battle with the compiler suppliers to support it adequately. (A 

familiar story?) 

The possibilities of changing horses in midstream - whether oflanguage or the main 

computer again - were frequently explored, with thorough studies of the options available. 

Each time it was felt that the technical advantages would be outweighed by the management 

disadvantages in simply being able to handle such a massive change. So the less than 

perfect choices were made not by default, but consciously, carefully looking at the 

tradeoffs. 

QUALITY ASSURANCE 

Quality Management System 

At about the same time as the project was getting under way, the company was one of the 

first anywhere to introduce an explicit software quality management system with a dedicated 

software quality department. 

At least ten per cent of software costs were allocated to the quality management 

function. Its operation was regularly vetted by the customer, and in general got a clean bill 

of health. 

Closely associated with the quality system was the training department which, in 

essence, taught the technical and procedural standards for the project. All new staff, 

however highly educated, went through an intensive four-week course in these. 

Some features of the quality management system might now be considered 

old-fashioned but, essentially, at first at least, it worked. But the reason that it worked, and 

the extent to which it worked, and the way that it worked were due much less to whatwas 

done than to whyit was done. 

The benefits were to a great extent in communication - giving a large and changing 

team a common way of doing things, of pulling teams together in some direction. 



www.manaraa.com

105 

It also gave everyone a good feeling to know that they were trail-blazing these new 

techniques - that they were held up as a shining example to others of the bright and better 

way to do things. So what, if anything, went wrong? 

Structure and style: procedures and paper 

First and foremost the creation of a large and separate quality department, certainly in the 

form which it took here, caused some of the problems. The approach is quite common in 

the industry and it is taken for good reasons. Even if given explicit responsibility for 

performing quality-related functions, development staff notoriously treat them with lower 

priority than their current technical or managerial challenge. Furthermore, it is often felt that 

the independence of a separate department enables it to act as a kind of corporate conscience. 

But that separation led to different goals, different styles of operation, and a different 

type of staff. Unable to see into the technical content of the project to directly assess its 

actual quality, they concentrated on execution of the procedures, and on providing 

documented evidence of the execution of the procedures. Paper, paper, and more paper. 

Rows and rows of filing cabinets full of forms. After all, this was what was needed to have 

the quality management system 'registered'. 

So programmers came to look on 'quality' as something to do with form-filling

nothing more than a boring clerical task. 

They willingly relinquished control, chairmanship, and conduct of their design 

reviews to the willing expansionist quality department. How else, on such a project, could 

"Not Applicable" have been accepted as the answer to a standard checklist question of 

"Have the real-time constraints been satisfied?" 

Elsewhere, they encouraged the configuration control clerk to fill in the 

configuration control forms for them. Of course the consequence was that the forms might 

have had all the right numbers in all the right boxes, but absolutely no content. This was 

fme for registration, but clearly, without real content, the forms could never have been the 

basis of controL And indeed they were not, since most of them were completed as a matter 

of form (!) some time after changes had been made. 



www.manaraa.com

106 

Configuration management: pretence or reality 

Behind this superficial problem lies a much bigger problem associated with software 

configurntion management genernlly. Part of the problem lay in the fact that the way it was 

done (and in many places, still is) was based on received wisdom. And because the 

development team had abdicated responsibility for these issues, no-one there looked closely 

enough to analyse the problem and see, and be brnve enough to say, that received wisdom 

was wrong. 

Software configurntion management procedures were based on those for hardware. 

But few software quality managers realise that the hardware procedures are genernlly 

concerned with change embodiment. That is, they are concerned with the control of 

changes to production, after a design change has been decided. The control of considerntion 

of design changes is something else entirely. So software designers were being asked to 

give details of their proposed change which they could not possibly do until they had 

actually designed it and convinced themselves that it was satisfactory. In software, though, 

that means 'until they had actually implemented the change and tested it' . 

The forms could be completed only retrospectively, and therefore perfunctorily 

which means probably badly and, often, plain wrong. 

Some might say that even if the quality system did not properly control what was 

done, at least it would provide the information to know whatwas done. Oh yes? It only 

took three months to find the right sources so that the accepted system could be rebuilt from 

registered librnry components. 

And hereby hangs another tale ... To some extent the difficulties experienced in 

rebuilding the system from librnry components was because the procedures, such as they 

were, had anyway been ignored in the heat oflast minute panic before customer tests. 

In recognition of this the quality department had accepted a streamlined procedurnl 

system for use during tests and trials, but this was also being ignored. This time it was 

because of the cavalier attitude of the front-line test-support team who felt themselves to be 

above such things. After all, they knew what they were doing, and what they had done: 

nobody should interfere with them. 

Meanwhile, just before each test, the software project manager was faced with both 

the customer and his own management asking for eleventh hour changes, while his own 



www.manaraa.com

107 

team were unearthing bugs and proposing fixes. Andhe was supposed to know what was 

going on. 

Procedures with purpose 

And that was the starting point for the solution - to recognise that the project manager had 

reaJlyto be in control. Faced with all the demands, he needed to have at his fingertips 

knowledge of what options were available - what he could and could not do, both 

technically with respect to the software design, and in terms of deploying effort to different 

tasks. 

New procedures were devised. They were simple but effective. They were based 

entirely on the needs of the project manager to be able to answer questions about possible 

rescheduling of changes. Some paper was involved, but not a lot. The emphasis was now 

on real information, not on documentation. And the information demanded from the team 

was now driven by genuine need from the top, rather than by some abstract idea of what 

documentation 'should' be provided. So those who had to provide it were brutally made 

aware of that need. They soon learned to cooperate. 

The quality manager took some convincing - or telling. Reluctantly he accepted that 

photocopies of the project manager's information - basically three sheets of paper, with 

many annotations, were all he was going to get. He did not readily accept that these were 

the best records he could possibly have, and that they were worth far more than all the filing 

cabinets full of (literally) meaningless forms. 

From the need for information, there were also implications for the information 

flow. These led to other major changes to the structure of the project team, which are 

described further later under the topic of project management. 

MANAGEMENT 

Running on from the organisational issues associated with quality management, we will first 

investigate some general aspects of organisational structure and management, before 

returning to the specific question of project management. 



www.manaraa.com

108 

Organisational structure 

One of the criticisms levelled at the project in an external audit during its last few years was 

that the software team was separate from the rest of the project. It was, in effect, acting as a 

subcontmctor. In consequence there had developed an 'us and them' attitude between the 

software division and the division holding the main contract. 

This was to some extent true. Right from its initial establishment it had been a bone 

of contention within the company. However, after an acrimonious paper war just as the 

project was beginning, 'The Progmrnming Group' was born. 

In the later criticism of the sepamtion, the benefits were forgotten. By having a 

single group responsible for all the software in the company's different projects, this 

'progmmming group' was able to develop a critical mass which could sustain a proper 

infrastructure of a development bureau, a software support group, the quality department, 

the training school, and a research and development team. 

It enabled a career structure for software staff, who would otherwise be a difficult fit 

in a company dominated by electronic engineers. A corollary was that it had, to some 

extent, pay scales of its own, in recognition of the geneml shortage in supply of suitable 

software staff. This did cause some problems of resentment elsewhere, but it was felt to be 

better to have staff and put up with the resentment than not to have staff. 

And if all these failed to satisfy an individual software engineer, the organisation 

was resilient to staff changes. 

Project management 

Turning now to project management specifically, there were, in addition to the handling, 

avoidance, or otherwise of the problems described earlier, other difficulties. These were 

primarily to do with project scheduling. 

Early in the project there arose what seemed like the sensible idea of software 

prototyping. Even today there is discussion and argument about the appropriateness of 

different approaches to prototyping. Then it was thought that there should be just a few, 

discrete mther than evolutionary, prototypes. Each new prototype would learn from the 

previous, in a process of refinement. The first would be simply to evaluate functionality. 

The second would accept changes arising from the first and test them with realistic-seeming 



www.manaraa.com

109 

hardware, but not the actual kit. Finally there would be a 'final draft' for use with 

near-production hardware, as the basis for the deliverable system. 

This all sounded fme - until the project schedules were collapsed. So the second 

prototype development began long before the first was fmished - even had it not been 

over-running. There was then no chance to use lessons learned from the first in the second. 

The two developments continued in parallel, with the first becoming more and more of an 

academic exercise, necessary for the supplier to meet its contractual obligations and to get 

payment; hated by everybody for consuming resources (ie people) and diverting attention 

from the main goal. 

But even that lesson was not learned later on. Some years later, the same thing 

happened again, with knobs on. The next prototype was, of course, late: and the overall 

schedule was foreshortened because a trials version was required early. So the concept of a 

prototype was abandoned, and the prototype already on the stocks transmogrified into the 

first of a string of deliverable versions, now relabelled phase I, phase 2, etc. 

This all sounded highly plausible while work proceeded on the first phase, and 

indeed even during the early days of the second phase. It was only during the middle of the 

second phase that it was realised that the software delivered from the first phase, and now 

looked after by a separate team, had evolved considerably in response to feedback from 

trials. 

Of course, the first phase team were supposed to keep the others informed of all the 

changes. But we have already heard how successful the procedures had been. Perhaps 

they would have got round to filling in the paperwork some time. But you know how it is 

under trials conditions ... 

However, there was now no way that the customer would accept a second phase 

deliverable which did not incorporate the changes incorporated into the much evolved first 

phase. Of course, to change the second phase to incorporate the first phase changes would 

have been a mammoth task, even if the trials version were not changing daily. 

And after the second phase, waiting in the wings, were the third, fourth, fifth, 

Eventually the management team bit the bullet. The second phase was, as a separate 

and parallel development, abandoned. The first phase was taken in hand and controlled 



www.manaraa.com

1lO 

properly. The second phase functions were designed as add-ons to be gmdually 

incorpomted along with changes arising from trials and with other changes in the customer 

requirements arising from the changing world of the customer. 

There was now just a single stream of development - incremental, evolutionary, 

development. 

At about the same time, major structuml changes were made to the project team. The 

impetus for the changes came from the new software project manager who had inherited a 

deep, compartmentalised, hiemrchyand who wanted much better visibility and 

understanding of what was actually happening on the project, and of what relationship it 

bore to the present requirements. This was connected with the new approach to 

configumtion management, which demanded real information, mther than mere 

documentation (discussed above under 'quality assurance'). 

The new structure was very 'flat', with a loose collection of 'task force teams' 

grouped by the different functional areas of the system. Senior subordinate managers who 

would usually be assigned sub-projects within a hierarchy were instead given functional 

roles - responsible for knowing precisely, at any moment, the status of the present work 

packages, the availability and suitability of staff for new work packages, the available 

flexibility for rescheduling, the financial position, and the technical position - in depth, not 

just that it was said to be alright, or that there were problems, but the precise nature of any 

technical problems. 

The senior technical staff responsible for knowing this last set of information would, 

on many other projects, have been promoted into administmtive positions in the hierarchy. 

Now they were placed in the various functional areas as team leaders. (Though these were 

relatively low-level in hiemrchical terms, it was clear to all that they were by no means 

junior.) 

The project manager could now know the precise actuaiposition at a moment's 

notice; was able to discuss new and changed requirements with his own management or 

with the customer on the basis of good information; and knew and was able to discuss 

technical problems as they arose, with the support of top-flight technical advisers who had 

equally good information. 



www.manaraa.com

III 

This approach is not recommended as a recipe for all projects and all project 

managers. It was just one way of achieving real control, rather than a paper pretence, and 

one way of achieving proper project communication (see later section on "what might be 

done"). 

In addition, the structural changes included a clear separation between the 

development 'task force teams' and the integration team. This removed the bottleneck 

which conventional integration techniques had imposed. This in tum enabled a dramatic 

increase in the effort which could be applied to the development - by an order of magnitude. 

In parallel, and in addition to the major changes to configuration management 

procedures discussed earlier, there were detailed alterations to working practices - like 

removing all private temporary storage so that all work went through the project library. 

Within six months of these changes the next software delivery took place on 

schedule - the first time this had happened since the minutes-before-the-deadline delivery of 

the proposal, ten years previously. 

From then on there would still be problems. The incremental development was not 

always as flexible as was hoped, since the sequencing of the incorporation of some features 

was sometimes quite critical. Some things could not be done a bit at a time. Some were just 

hard. But there was no longer the threat of tens or hundreds of man-years of work simply 

being shelved. 

Except, of course, that that is precisely what happened to the project as a whole. 

ANALYSIS AND DISCUSSION 

Did it go wrong? 

Was it a disaster? If a disaster is something which adversely affects human beings then yes. 

Maybe ·the politicians, empire builders, and plain dimwits simply got their due 

comeuppance. But the majority who suffered sweeping redundancies, or other more subtle 

damage to their psyches and careers, were honest hardworking engineers who had achieved 

great things. Perhaps, though, we should reclassify it as a natural disaster, given the 

combination of perversity and inevitability. 



www.manaraa.com

112 

Why did it go wrong? 

Why was it a disaster? Well, it was not at source the software, nor any of the other 

commonly quoted culprits. Certainly there were things wrong with all of them, but that is to 

ignore the many things which were right. Now getting some things right - even, with 

cooler retrospection, a lot of things right - can hardly be an excuse for getting others wrong. 

But it does indicate that the problem lies deeper than a simple change of management team. 

After all, these were mostly well-qualified, well-intentioned, well-motivated people, 

intrinsically capable of making decisions at least as sensibly as their critics. 

To simply say that if this had been done or that had not been done then the project 

would have been a success is flawed in two respects. Firstly, it is to ignore the beneficial 

aspects of many of the decisions, without suggesting how those benefits might otherwise be 

obtained (the grass is greener effect). Secondly, to say that decisions could have been better 

is to beg the question of how they might have been made better. 

It is difficult to see what might be done better to foresee the undesirable side-effects 

of otherwise well-considered and sensible decisions. It is facile, though perhaps true, to 

talk ofleaming from experience and conSUlting widely in order to tap into the experiences of 

others. 

Parochialism and politics 

So what of bad decisions? The case study illustrates that, in general, on a large project the 

problem is not directly that people make the wrong decisions. They do this as a 

consequence of approaching the decision from the wrong direction. They look after their 

local interests, acting parochially. Sometimes this is because they forget or are never aware 

of important considerations outside their own area; sometimes it is perhaps why. 

'Parochialism' may, though, sound more pejorative than intended. It has overtones 

of deliberate ill-will to others, but that is rarely the case - at least in the beginning. 

There are some bad guys, who start out by seeing a project as one round in their 

fight to develop a career rather than a system. It is not that they want to do a disservice to 

the customer, just that doing a good job is not their number one priority. So why not build a 

career by building a good system? Well, on projects which last more than ten years, in an 

industry in which career steps - and even salary assessments - may be no more than six 

months apart, being seen to perform in the short term can easily be more important than the 



www.manaraa.com

113 

real thing in the long run. 'Perfonnance' is the right word - as in acting: they are the 

corporate politicians. 

But the majority at least start out with goodwill to all men. 

For an analogy, look at life on the fann - a coherent food-production organisation, 

when viewed abstractly and from a distance. Now step inside. The pigs see other pigs and 

a sea of mud. They may through cracks in the pig-sty door see a glimpse of the world 

beyond - perhaps the side of the sheepshed - and wonder what sort of pigs there are on the 

other side. The sheep see other sheep, some straw, and, at lambing-time when they most 

want to be alone, a lot of human heads. The fannyard geese see quite a lot as they strut up 

and down. Sometimes they see the horse's head sticking out of the stable door. Given its 

size, they muse on the strength of its two webbed feet. The battery hens don't see a lot. 

And we have all heard the one about being a mushroom. 

So it is on a project. For all the best reasons we encourage small teams to have a 

strong sense of identity; we minimise the number of people reporting to each line manager; 

to avoid confusion we insist on fonnal communication channels - the pig -sty doors. So we 

create deep management hierarchies and the mushroom syndrome. How many times have 

senior managers been appalled that their junior team members did not even know who the 

project manager was when he visited (let alone the customer). 

So both managers and members of teams within a large project end up pursuing 

local goals. What is this but modularity, and separation of concerns, after all? - a good 

thing, surely? It is not (at least not always - see later) that they would not like to identify 

with the overall project goals. Indeed they perhaps think that they do, but as in the 

fannyard, who knows? In its mild fonn the symptoms are no more severe than parochial 

decision-making, though as discussed above the technical consequences can be very 

damaging. But there is only a thin line between parochialism and politics. It takes only a 

little resentment between individuals or teams for the one to degenerate into the other, and 

for long-running feuds to fonn and fester. 

And then, to compound the difficulties, things go wrong. Even if each manager had 

not been set an impossible task, delivering to time and budget is rarely easy and there is 

rarely any contingency for any difficulties which might arise. Once the budget is blown, 

careful, steady, conscientious management is not easy. Getting away with the bare 



www.manaraa.com

114 

minimum and justifying it becomes more important than the customer's needs or even the 

boss's. 

So even the good guys can, under pressure, be more concerned with 

self-preservation than cool, honest, appraisal of the situation. Who can blame them? Only 

those who have never been there. And can anyone tell which are the bad guys and which 

the good guys in a bad mess? 

And these last two problems - of both bad guys and good guys under pressure - are 

not restricted to teams within large projects, but to the senior project managers and company 

managers as well. 

Politics and parochialism affect not just suppliers, either: customer organisations can 

be equally amicted. We talk simplistically of 'the customer', but in large organisations there 

may be several departments responsible for different facets of the acquisition of new 

systems. (Think of the twenty-odd on the case-study requirements committee.) There can, 

for instance, be a continual tug-of-war between end-users and their centralised 'buying 

department'. On one project, worse even than the case study, these customer departments 

could not even agree on which one of them was legally responsible for the contract. The 

supplier could not fmd out who to sue for non-payment, after difficulties with delays and 

disagreements on the specification. 

In these situations a project can be just a pawn in the political manoeuvring of 

different customer departments. Even ifit does not start out like that, when things begin to 

go wrong the same forces as in the supply side will start to surface. There will be those 

trying to save face with their superiors and colleagues (ie competitors in their own rat-race), 

and those trying to make capital out of the problems. Those faces which were so friendly 

during all the fun of feasibility studies can tum very sour when their owners are in big 

internal trouble. 

Perversity 

After parochialism, whether of the benign farmyard variety, or of the malignant political 

kind, comes perversity. This is not, in this context, deliberate wilful waywardness of 

individuals. Rather, it is the failure of 'the system' - the people system: failure to 

communicate, despite every effort; corporate forgetfulness. "People squared equals 

perversity". 



www.manaraa.com

115 

Such pelVersity characterises those examples given earlier in the paper where, with 

apparentlygood communication between teams working together, and nobody acting 

parochially, still things went wrong. 

In some cases the requirements evolved, invalidating the original design 

assumptions. Hence the basic form of the design was no longer appropriate. Then that 

form of design became a shackle, constraining both performance and the further 

enhancement of the design. 

In others, where the design assumptions were still valid, the design evolved for 

other reasons. In doing so it diverged from the original design concepts. No-one 

remembered them or recognised what was happening. So the bastardised remnants of the 

original design actually degraded performance, and hindered further design enhancement. 

Some of the unexpected side-effects of otherwise good ideas seemed quite pelVerse, 

too. 

It seemed like a good idea to base the software design on an assumption that modem 

signal processing hardware would produce clean data; like a good idea to use advanced 

techniques like message-passing software design; like a good idea to reuse existing 

hardware change control standards. 

Indeed it sometimes seems that any attempt to improve things is to tempt fate of the 

pelVerse kind. We know and try to anticipate the obvious opposition from reactionaries and 

entrenched NUL But there is also a basic problem with novelty itself. New approaches are 

simply not understood. In a way they are not even understandable if they are not part of the 

'culture' of an organisation or the discipline. The new ways are not easy to adopt. 

Applying them can seem contrived. It may be easier to choose a 'worse' solution which is 

'understandable' (ie personally familiar) and which conforms with the existing culture (ie 

corporately familiar) . 

But these are not the reallypelVerse problems of novelty. 17Jcyarise when the new 

techniques are applied, but without understanding. Thus the strange, but perfectly 

well-structured, program module. 



www.manaraa.com

116 

SO, WHAT MIGHT BE DONE? 

A problem in perpetuity? 

The historical pattern is that we begin with an individual. This individual designs or in other 

ways works with a set of mental building bricks - concepts, or even physical components. 

To do more than can be achieved by one individual, we form teams, and teams of 

teams - big projects. 

From asking a single monkey to write "Hamlet", we now expect co-operating teams 

of monkeys to deliver the Complete Works of Russell. 

We can improve the process in a variety of ways to enable an individual or a team to 

do more, or the same but better. We can give the individual 'bigger' concepts or 

components. We can develop design techniques which enable the individual to make better 

use of existing concepts (such as structured programming). And we can try to better order 

the organisation - in the most general sense, including the project organisational structure, 

the development schedule, the procedures. 

The biggest advances, since they allow equivalent sized and organised teams to do 

better, come from 'bigger concepts'. But, in general, individual team members, project 

managers, and even companies have little control over these. They evolve from the industry 

at large. Individual organisations may have their in-house design techniques, and usually 

have their own approaches to company and project organisation. But, as we have seen, 

conventional procedures, however carefully conceived, are not necessarily enough for large 

projects. 

So it is worth looking for generically applicable ideas, not encapsulated in standard 

management techniques, about how to do things better. 

It might be argued that the problems will go away as we give designers bigger and 

better concepts and components, since they make projects smaller and simpler. But that 

would require that we exhaust the capacity of application domains to find new and ever 

more complex requirements. Yet there is little evidence that we will cease to stretch our 

capabilities, and sometimes to over-reach them - to bite off more than we can chew. 



www.manaraa.com

117 

There is even an argument that it is good and stimulating for society to take on at 

least some high-risk projects. But high-risk of some means almost certain failure of at least 

a few. Which customers will volunteer for disaster projects in the interests of cultural 

enhancement? 

So what does make big projects go right? 

Looking at good decisions and well-managed projects and working out who were the people 

behind them, the important factors seem to be luck, together with parochialism, power, 

personalities, and so on - all the same factors - which by, happenchance, happen to lead to 

success rather than failure. In other words - people, again. 

But there do seem to be some common success factors. Not counting luck, two 

stand out. The first is a good project manager; the second that the team have done it - or 

something like it - before. These tend to be discounted by technologists, perhaps because 

they have so little control over them - like the adage about choosing one's parents more 

carefully. 

At first sight there are no obvious connections between these factors and those 

which led to the mixed bag of successes and failures of the case study. But what is it that 

the 'good project manager' doeS! We talk of ' a strong sense of purpose', 'commitment', 

'knowing what he wants' coupled with an ability to communicate those things and to 

motivate everyone else. 

Moreover, this is a two-way process. The 'good manager' will also be a listener

able to pick up the 'vibes' from the project team; able to sort out the wheat from the chaff of 

project reports and meetings; able to appreciate what he is hearing so that his actions are 

based on understanding rather than rote and rule-books. 

Is this not just one approach to overcoming the problems of parochialism and lack of 

understanding of, and identification with, the real customer requirements and with the 

design concepts? In other words, a 'good manager' may be able to achieve the effects 

which we seek. We must try to achieve the same effects without necessarily having any 

choice over the project manager. 

Out of a project employing several thousand people, perhaps only a handful realJy 

appreciate the customer's requirements; only a handful really understand the design 

concepts; and if we are lucky these handfuls may overlap. Many of the problems of the case 



www.manaraa.com

118 

study were a consequence of a breakdown in (effective) communication of this appreciation 

and understanding. A 'good manager' is one way, and we may always be better with a 

good manager than the alternative. But if we recognise what it is that he does, then we may 

be better able to facilitate the achievement of the same effects in other ways. 

In a way, that is one of the purposes of design reviews and requirements reviews

to ensure that proper communication has been achieved. When viewed in this light it 

becomes clear why it is so important to have customer participation at such reviews (at the 

appropriate level). It also becomes clear why they should not be treated as an administrative 

formality. 

But there are more fundamental things we can do which can have a bigger effect. 

Thus the 'flat structure' described above for the software team, towards the end of the case 

study. 

The purpose of that structure was originally to give the software project manager 

hands-on control - counter to received wisdom on management style. Not only was that 

achieved, the benefits were much more. The 'trusties' embedded into the development 

teams were placed there to give the project manager good information. But clearly this 

worked both ways. All members of the development teams were much more aware of the 

customer's needs, of the design strategy, and of how their own work contributed and fitted 

with the overall design and the work of other teams. Moreover, morale was thereby 

improved. 

There may be other ways of achieving the same effect: one alternative is to have a 

'flying squad' of technicians who are made guardians of the design, its integrity, and its 

coherence with the (perhaps evolving) design concepts. This has the additional advantage 

of separating the roles of technicians - perhaps not the best managers - from management. It 

may have the disadvantage of separation and isolation from the line management - it will 

need a determined project manager to make it work. In a way, the 'trusties' of the case 

study fulfilled this role, but without becoming remote from the line. 

Turning now to the second oft-quoted success factor, should only those 

organisations familiar with the type of work undertake new projects? 

Let us set aside political considerations such as the drive to open markets up to new 

suppliers, to provide opportunities for small and medium-sized enterprises, and generally to 



www.manaraa.com

119 

encourage competition. Let us further set aside concerns that innovation would be inhibited. 

Let us instead ask what is meant by 'corporate familiarity'. 

Even if a supplier has done a similar large project before, it would probably also 

have been a lengthy project. And an organisation is a collection of people who, in this 

fast-moving industry, will mostly have moved on - as will the technology which they used, 

and indeed the operational requirements. So we are unlikely ever to find the same project 

team which has even done the same sort of thing before. 

What we have instead is a collection of people who might know something about 

some aspects of this sort of job. The message is the same - we must organise to 

communicate this knowledge, rather than leave it locked up in a few isolated heads. 

(Though care must be exercised so that over-conservative individuals do not stifle 

innovation.) 

But: as the case study demonstrated, documentation - however thorough, and 

however carefully design decisions and the reasoning behind them are documented as well 

as the design itself, and even if there are no hidden assumptions - is not enough if no-one 

will read it. The organisational structure must be such that those who have the knowledge, 

or who know it exists, are able to make sure that it is applied effectively. 

So far we have talked of ways in which we might get the best out of people, their 

knowledge, and the technology they use. 

An alternative approach is to attempt to build into the management and technical 

organisation mechanisms for monitoring and feedback. So we would have a 'closed-loop' 

development system, rather than rely on the 'open-loop behaviour' of the project team. But 

this is what quality control is supposed to do and, as with quality control, it might sound 

frne on paper; it might even work in 'peacetime'; but it will probably break down in the heat 

of action, when the urgent takes priority over the important. 

We should not expect procedures based upon some ideal, but unrealistic, model of 

development to tum untidy reality into the tidy ideal. And it is often at the very time that 

control is most needed, that the control mechanisms break down. We should avoid reliance 

on monitoring mechanisms. As in so many control systems, the greater the dependence on 

feedback, the greater the risk of instability. 



www.manaraa.com

120 

We have heard how the case study was awash with procedures and foons, driven by 

the needs of certification. But the foons did not say anything useful, and the procedures did 

not help anyone actually control anything. The institutionalisation of the procedures -

leading to abrogation of responsibility to a separate quality department - diminished their 

value still further. Finally, they were ignored anyway in the heat oflast minute panics. But 

this last should not really be seen as an additional problem: it was more a consequence of 

the contempt felt for the official system. 

It was only when the project manager took full responsibility for both his own needs 

for control andthe needs for quality assurance that the procedures and paperwork were 

redesigned to provide, use, and record the real infoonation required for the real 

decision-making. Then there was real motivation to make the procedures work. 

So there is a positive conclusion here. Procedures should primarilybe designed not 

to check that the right things are done, but to facilitate the doing of the right things. 

SUMMARY 

We spend a lot of time agonising about which techniques and tools to use in future - and 

even whether to suffer the trauma of a mid-teon change to solve today's project problems. 

But who cares what colour we paint the hangar when we should have been building a ship? 

Most designers can do a good job with the techniques and tools they have to hand, 

as long as they understand their capabilities and limitations, and as long as they understand 

what they should really be doing. But there are no technical fixes for problems of 

understanding, nor for fundamental organisation and management problems which inhibit 

that understanding. 

It is sometimes said that all we have to do with a large project is make it a collection 

of small projects. The argument in this paper is that that is not enough. It is not even 

enough to make it a collection of the rightsmall projects. It must be more than the sum of 

its parts, and that added value has to come from communication and cooperation, and from 

structuring the project, the project team, and the procedures to achieve effective 

communication. Else the sub-projects will, first through parochialism, and then politics, 

and peppered with perversity, fragment and fail. 



www.manaraa.com

121 

Final footnote on the 'software problem' 

The first instance of a 'software problem' given in this paper was the difficulty that the 

software had in coping with more than two orders of magnitude more data than the design 

target. To conclude, here is another 'software problem'. 

One day a serious software fault was reported. Apparently, the screens had simply 

gone blank during tests. From the subsequent 'fault investigation' the following story 

emerged. 

During previous tests the customer had complained of an annoying rattle in the 

metalwork of the system. The mechanical engineers had cured the rattle by adding a metal 

brace to the offending panel. Unfortunately this brace passed across the duct for a cooling 

fan. The fan was that for the main computer which, some time during the later tests, 

overheated and quite properly tripped out, switching off automatically to avoid damage. 

The screens went blank and in the history books - in this case the system fault log - was 

entered another statistic - yet another 'software problem' . 

--00000--



www.manaraa.com

5 
DESIGN OF A FLIGHT AND RADAR DATA PROCESSING SYSTEM FOR THE 

SUPPORT OF AIR TRAFFIC CONTROL 

SCWILLMOTT 
UK Civil Aviation Authority 

ABSTRACT 

An Air Traffic Control Centre is presented as an example of a Large 
Software System thereby enabling characteristic concerns to be illustrated. 
The Air Traffic Control problem domain is explained in terms of airspace 
structure and the roles of the people involved. The processing chain of 
flight and radar data from source to destination is described, together with 
their interaction. A generic system architecture is discussed. A subsystem 
life cycle covering planning, procurement and operation is outlined. 
Finally concerns characteristic of Large Software Systems in general are 
discussed with reference to the above framework. 

1. INTRODUCTION 

1.1 This paper is based upon a presentation for the Centre for Software 
Reliability Sixth Annual Conference in September 1989. The conference's 
emphasis was on the real problems of software engineering for Large 
Software Systems. All figures referenced appear at the end of the paper. 

1.2 The paper endeavours to provide insight into the various software 
systems which are linked together to support Air Traffic Control (ATC). 
The intention is to allow an appreciation of the size and complexity of 
such systems. Examples are loosely derived from Flight Data Processing 
(FDP) and Radar Data Processing (RDP) at the London Air Traffic Control 
Centre (ATCC). Airports are the other major component of a national Air 
Traffic System (ATS). In order to generalise they are considered to be 
analogous in this paper's terms to a scaled down ATCC. The vital areas of 
voice communications and navigational aids are not considered. Neither 
is the dissemination of relatively static information, such as airport status 
or air space maps, considered. 

1.3 Firstly a simplified view (figure 1) of how airspace is structured is 
presented in order to provide some oversight of ATC. This is enhanced by 
illustrating the various roles of personnel at an ATCC. The overall 

122 



www.manaraa.com

123 

complexity of a national centre is then indicated by a structured viewpoint 
breakdown (figure 2) which places the FDP and RDP subsystems in context. 

1.4 Flight and radar data are considered to be different representations of the 
same entity. The former relates to the intentions of the aircraft's pilot 
while the latter corresponds to the actual position of the aircraft in the air. 
Both aid the dialogue between the ground based controller and the 
airborne pilot, the purpose of which is the safe, orderly and expeditious 
flow of air traffic. Consequently the relationship between FDP and RDP is 
overviewed (figure 3) before considering each in more detail. The chain of 
processing from remote source, through processing at the centre and to 
display on an ATC suite is outlined for FDP (figure 4) and RDP (figure 5). 
A view is presen~ed of how these two chains of processing could be more 
closely integrated in the future (figure 6). 

1.5 Systems such as these require significant engineering investment in terms 
of planning, procurement and operation. This is illustrated by a simplified 
subsystem life cycle (figure 7). 

1.6 The paper concludes with a discussion of concerns characteristic of Large 
Software Systems in general and in particular with reference to the 
framework established. 

2. SIMPLIFIED AIRSPACE STRUcrURE 

2.1 Figure 1 illustrates plan and elevation views of the air space controlled by 
an ATCe. The International Civil Aviation Organisation (ICAO) defines 
airspace in terms of national and international Flight Information 
Regions (FIRs). This airspace is generally stratified into Lower, Middle and 
Upper Air Space. The major components in Middle Air Space are Airways 
which have volume and are known collectively as Controlled Air Space. 
Aircraft flying within Airways must satisfy certain mandatory 
requirements (eg. must file a prior Flight Plan and carry a Secondary 
Surveillance Radar transponder). ATC here is active in so far that the 
pilot, who carries the ultimate responsibility for his aircraft, must obey 
ATC instruction unless he has good reason to do otherwise. In this event 
an incident would be declared and investigated. The bulk of civil 
commercial aircraft fly in Airways and are deemed to be en-route from 
departure to destination airports within the FIR. Point to point routes are 
also designated for en-route aircraft in the Upper Air and which are over
flying all or part of the FIR. Upper Air flights are also under active ATe. 
Aircraft flying outside Airways are known as off-route traffic and the ATC 
service is passive or advisory. In general all traffic in an FIR is controlled 
from one ATCC, en-route from one Operations Room and off-route from 
another. In the UK the former is manned by civilian Air Traffic 
Controllers and the latter by military. 



www.manaraa.com

124 

2.2 When en-route aircraft enter the environs of a major airport complex they 
enter special airspace known as a Terminal Maneouvering Area (TMA). 
Final approach and departure occur within a Control Zone which 
surrounds the immediate airport vicinity and the ATC service is provided 
by the Airport. Aircraft in the Upper Air and in Airways fly in generally 
uniform level flight, whereas aircraft in the Middle Air tend to be military 
and fly in a more unpredictable fashion. Aircraft in the TMA also require 
more effort to control as they are descending into or climbing out of an 
airport or being.held in stacks when busy. In order to organise ATC the 
FIR airspace is sectorised so that only one Air Traffic Controller is 
responsible for the aircraft in a designated volume of airspace. Hence the 
controller's task is divided between dire.cting the pilot and coordinating 
with other controllers. 

3. AIR TRAFFIC CONTROL ROLES 

3.1 Civil ATC is manned in watches which provide a 24 hour service. Each 
watch is managed by a Supervisor who keeps the ATC workload under 
constant review. It is the Supervisor's decision when to impose or lift 
restrictions on the number of aircraft being controlled in the en-route FIR. 
Each civil sector is controlled by a civil suite, which is often separated for 
example into east bound and west bound. The sector / suite team is 
managed by a Sector Chief Controller, who will look for impending 
problems. Active ATC is provided by a Radar Controller, who concentrates 
on the Radar Data Display and talks on a designated radio frequency to all 
aircraft under his control. The Radar Controller is assisted by a Support 
Controller who handles all inter-sector coordination. This ATC team is 
complemented by ATC Assistants who prepare and present flight data as 
appropriate. 

3.2 In addition to the ATC sector teams there are a number of more general 
ATC tasks. These include Flow Regulator Controllers who are active when 
the airspace flight capacity has been restricted. Their prime function is to 
allocate departure slots for scheduled and unscheduled flights from 
airports. A Low Flying Advisor will provide details of traffic in the Lower 
Air such as crop sprayers. Any pilot in the open FIR who is not receiving 
any ATC service can radio in for advice from a Flight Information Service. 

3.3 Military ATC is also provided in 24 hour watches. Each watch has a 
Supervisor who oversees the Operations Room. New ATC tasks are 
assigned by an Allocator Controller to sectors in his geographic area 
according to available workload at these suites. Each suite is manned by a 
Radar Controller as for civil and he is supported by an Assistant who 
undertakes coordination functions. A significant number of off-route 
flights fly through Airways and as such present coordination problems 



www.manaraa.com

125 

which are resolved by Civil/Military Joint Area Controllers who form 
another component of civil sector teams. All emergencies, ranging from 
hi-jacks to pilots who are lost, in the FIR are handled by a military Distress 
and Diversion ATC team. Special flights, such as Royal Flights, are 
handled by a Special Tasks ATC team. 

3.4 In addition to the ATC watches there are 24 hour Systems technical 
watches. These are managed by a System Controller who is responsible for 
the performance of all the technical systems supporting the operational 
ATC watches. Each system has a designated System Engineer who is 
backed by a Support team. The prime purpose of the Systems watches is to 
maintain the necessary level of operational support using individual 
system online redundancy and major component replacement. Repair of 
offline system components is performed by day specialist staff. 
Development of systems is also undertaken by specialist day engineering 
staff, however, final testing of changes has to be scheduled into the 24 
hour operational service - generally at night and during the relatively 
quieter winter period. 

4. VIEWPOINT STRUcrURE FOR AN ATCC 

4.1 The viewpoint structure shown in figure 2 is derived from a study done by 
the Royal Military College of Science. Only solid nodes are expanded and 
the diagram is not considered complete. The root of the hierarchy is to be 
interpreted as the ATCC itself in the Air Traffic System environment. The 
Air Traffic Services provided by the ATCC are factored out from a context 
of interaction with other ATCCs, users such as airlines and pilots and 
airports. The above Systems Control and Support Services viewpoints are 
also recognised. Remote radar stations are considered below. 

4.2 In the next two levels in the hierarchy the different ATe functions alluded 
to above are identified, but only civil ATC is expanded in any detail. Flight 
plans are received by the ATCC and stored. Flight details are presented at 
the relevant sector just before the planned airport departure or arrival at 
the FIR boundary time. When the flight is confirmed as active more 
details are displayed at all relevant sectors in the ATCC. Furthermore as 
the flight progresses these details are updated. 

4.3 Radar Data Processing (RDP) is broken down into previous RDP and 
display systems, which are being superseded by the mainstream RDP and 
its backup bypass system. The functional aspects of full RDP are described 
below. 



www.manaraa.com

126 

5. OVERVIEW OF FLIGHT AND RADAR DATA PROCESSING 

5.1 Figure 3 presents an overview of the interaction between Flight and Radar 
Data Processing. In general the Flight Data Processing (FDP) of data 
associated with a flight is concerned with the intentions of the flight. In 
theory before a pilot departs he files his intentions in an ICAO standard 
format which is propagated over a worldwide flight data network to those 
ATCCs from which he will require an ATC service. In practice each airline 
files its scheduled flights in a batch of repetitive flight plans. Only one-off 
flights are filed by individual pilots. However, there are ICAO standard 
message formats for amending these filed plans. These plans and their 
amendments are stored at each ATCC aI).d presented to and amended by 
operational controllers as described below~ Relevant changes, such as 
boundary time estimates, are sent automatically to ATCCs in adjacent 
FIRs. 

5.2 The actual position of an aircraft in the air is detected by radar stations 
remote from the ATCC. For an aircraft entering the FIR this detection is 
generally the first positive indication that the flight is airborne, whereas 
flights departing from major airports in the FIR are notified directly to the 
ATCC. This interaction between Flight and Radar Data is captured in a 
common Flight/Radar Database which forms the heart of the overall 
FDP /RDP system. The display of radar data to the ATC Radar Controller is 
tailored interactively by the controller. Furthermore with full RDP he is 
able to interact with flight data via his radar display interface. Knowledge 
of the flight's intentions is also valuable in resolving some of the radar 
processing problems identified below. 

6. FLIGHT DATA PROCESSING CHAIN 

6.1 Figure 4 shows the Flight Data Processing chain in more detail. Flight 
plans and their amendments are received over telegraph networks, via 
telephone and on magnetic tape. They are processed initially to check 
them and enable their manual repair before storing them. The most 
complex part of a flight plan is its route field. This together with the filed 
departure point is processed in order to determine the initial departure 
path from the airport in the FIR. The estimated time of departure and the 
initial sector are derived so that proposed or warning flight information 
can be displayed at appropriate sectors at the appropriate time. 

6.2 When the flight becomes airborne or is handed over from an adjacent FIR 
the flight plan is activated. This is done manually or triggered 
automatically by RDP. The route field is processed again in full in order to 
estimate arrival times at established reporting points. This processing 
depends heavily on the FIR airspace route structure. Wind information is 



www.manaraa.com

127 

also used to compute ground speeds. Active flight data is output to all 
sectors in the ATCC along the flight's route. In principle the same 
processing is done for en-route and off-route, but different display media 
are used. FIR boundary estimates are sent to and received from some 
neighbouring FIRs automatically. 

6.3 Only one controller at a time is responsible for the flight and only he can 
update its flight data. However, all updates must be distributed to all 
interested sectors. Handing over this responsibility to the next sector 
controller is defined formally in the Manual of Air Traffic Service 
procedures and supported by interactive processing. En-route traffic tends 
to flow uniformly and these procedures are streamlined. Off-route traffic is 
more unpredictable and handover procedures are more flexible. 

6.4 When an adjacent FIR places restrictions on the rate at which it will accept 
traffic Departure Flow Regulation comes into force. Up to two hours 
before the filed departure time an airline can request a departure slot. 
These requests are displayed at the flow regulation suite together with the 
known planned departures and flow restrictions. The Flow Regulator then 
allocates a slot and advises the airline. The aircraft must depart within the 
20 minute slot or another slot must be requested. 

7. RADAR DATA PROCESSING CHAIN 

7.1 The various radar data flows from the radar head through to the radar 
display are shown in more detail in figure 5. Primary radar is a passive 
surveillance system. A pulse of microwave energy is reflected by the 
aircraft back to the rotating radar antenna thereby enabling the range and 
azimuth relative to the radar head to be determined. The aircraft can be 
struck by about ten separate pulses as the antenna turns. The analogue 
signals are digitised and processed. The central aircraft return is 
determined. Fourier techniques enable stationary objects or slow flying 
flocks of birds to be filtered out leaving discrete radar returns known as 
plots. Plots are tracked and correlated over successive rotations of the radar 
antenna so that spurious single returns can be discarded. 

7.2 Secondary Surveillance Radar (SSR) is an active system. The SSR radar 
emits groups of microwave pulses which are decoded by an SSR 
transponder on the aircraft which returns a train of pulses encoding an 
aircraft identity or a readout from the aircraft altimeter. Again these 
signals are digitised for processing. Aircraft range and azimuth are 
determined as for primary radar, but use of monopulse techniques enables 
increased accuracy. Transponder replies have to be correlated with 
interrogations by the SSR concerned. Replies triggered by other SSRs are 
ignored. Furthermore as the SSR replies are stronger there is a greater 



www.manaraa.com

128 

probability of misleading reflected returns. Plots are correlated over 
successive scans as for primary. 

7.3 En-route radar sites have both primary and SSR with either synchronised 
or co-mounted antennae. An aircraft should be detected by both systems 
and the two processed plots are combined into one plot message. 
Otherwise returns are composed into their own discrete messages as they 
would be from a single radar site. All these messages are transmitted over 
landlines or microwave links to the ATCC. 

7.4 Radar data received by the ATCC is routed to different systems. 
Furthermore Airways and the TMA are covered by two or three 
overlapping radars. Mainstream RDP fu?es this radar data into an 
integrated picture. Radar input processing time-stamps and converts all 
radar plots into system cartesian coordinates based upon an Earth model. 
Each radar head is registered as a fixed point and different radar heads at 
the same site are collimated from a single reference point at the site. This 
processing enables continuous monitoring of radar quality. Overall SSR is 
preferred as it is very much cheaper for long range cover. It carries more 
data in terms of aircraft identity and altitude. The latter enables accurate 
slant range correction. In the absence of a radar derived height the flight 
plan is used instead. 

7.5 Correlation of radar plots from different radars and over their consecutive 
scans prepares radar data for tracking. Tracks are initiated when 
uncorrelated plots from previous scans are recognised as a credible track. 
Flight data assists in this recognition. Conversely track initiation can 
automatically activate a flight plan. New plots are associated with existing 
tracks. Where there is more than one track in the association volume this 
correlation process can become complex. Plots which do not become 
identified with a track are passed on directly to radar picture composition. 

7.6 The tracking process naturally includes updating the track data with the 
new plot. This enables more accurate prediction of where the next plot is 
expected, thereby reducing the association search volume. Optimal 
tracking is recursive. If an expected plot is not received the track is able to 
coast until a plot appears within an ever increasing search volume. Finally 
if no plot is received after a certain time the track is dropped. Ordinarily 
this occurs in response to a flight data update canceling the plan when the 
flight lands or passes out of the FIR. 

7.7 Radar returns are prone to random and systematic errors. These can lead 
to erratic display of an aircraft in uniform flight. Tracking is used to 
smooth out these errors. However, this smoothing also tends to disguise 
the display of an aircraft turning. The adverse consequences can be 
reduced if the track is matched with a flight plan and the plan indicates a 
manoeuvre. 



www.manaraa.com

129 

7.8 Full tracking also enables longer term prediction of flights - thereby 
enabling conflict alerting to warn a controller of an impending incident 
and giving him time to redirect aircraft. 

7.9 The integrated radar picture is composed of tracks, plots and map data. It is 
broadcast to all radar displays. Display of uncorrelated plots covers 
problems in track correlation. However, generally there is too much 
information for an individual controller and he selects that information 
which is relevant ego he limits the range of airspace displayed. 

7.10 Owing to the complexity of the above mainstream RDP an ATCC will 
have a backup RDP path. This generally processes individual radars 
through to display. In this scheme it becomes important to be able to 
convert the SSR aircraft identity code into its callsign. This conversion is 
derived from FDP. A simple route designator is also supplied for display 
against the radar symbol. 

7.11 The Systems Controller is able to remotely monitor and control which 
radar head and supporting electronics is in operation. 

7.12 Finally radar data is recorded so that it can be replayed to enable 
investigation of any ATC incidents. For example in a real incident a radar 
replay was able to pinpoint quickly the area where an aircraft crashed into 
the sea. 

8. INTEGRATED FLIGHT AND RADAR DATA PROCESSING 

8.1 With modern computer technology there is greater opportunity to 
integrate and consolidate much of the above processing. One possible 
architecture is illustrated in figure 6. Use of Wide Area Networks would 
enable the FIR ATC function to be distributed between several smaller 
ATCCs and Airports. These would provide contingency cover. 

8.2 It would still be necessary to have a central computing complex for the 
global processing needed to support conflict alert, sector load prediction 
etc. This would probably be a complex of coupled fault tolerant 
mainframes. 

8.3 Within an ATCC, Local Area Network (LAN) technology would greatly 
simplify the distribution of processed flight and radar data. Multiple 
redundant networks would improve the overall system resilience. 

8.4 ATC suites would be based on high powered workstations in groupings of 
one, two or three. The display of flight and radar data would be integrated. 
Reconfiguration of the Operations Room would be handled consistently. It 



www.manaraa.com

130 

would be sensible to integrate voice communication channel selections so 
that it would be straightforward to set up a particular suite for a particular 
airspace sector. 

8.5 This type of architecture would support a progressive failure strategy. 
Failure of central processing would not prevent suites from 
communicating over the LAN. Failure of the LAN would not prevent 
local workstation support. These failure modes would allow existing 
airborne aircraft to be handled safely until they landed or left the FIR. 
When traffic has decayed to an acceptable level the ATCC could be 
recovered. 

9. SIMPLIFIED SUBSYSTEM LIFE CYCLE 

9.1 Large Software Systems such as described for an ATCC require significant 
investment. This must be planned and controlled by reference to an 
overall life cycle. Figure 7 shows how various life cycle activities interact. 
In order to meet corporate objectives it is necessary to develop strategic 
plans which capture the evolution of the system and its component 
subsystems. Programmes of one or more projects are established to create 
or change systems. Completion of a project results in operation of a new 
function, which improves the ATC service. 

9.2 Each subsystem develops over a life cycle. Most subsystems are embedded 
and it is important to explore the requirement and perhaps architectural 
design during the conception phase. This culminates in a specification 
which enables competitive procurement. Production is done under 
contract and results in a delivered subsystem which has to be integrated 
into the operational environment. During its operation, the performance 
of the subsystem is monitored so that a timely decision can be made with 
regard to planning its replacement. Conventional project management 
covers the activity from specification to introduction into operational 
service. 

9.3 ATC is a regulated service and as greater demands are made of the 
supporting systems it is becoming more important for the above 
development to take place under approved quality management 
procedures - both on individual systems and across the organisation. 

9.4 Configuration management is also a major issue. It is paramount that 
changes to connected subsystems are coordinated when proposed and 
when implemented. A hierarchy of Configuration Control Boards can be 
defined which in turn relates to an overall system/subsystem 
decomposition. 



www.manaraa.com

131 

10. CHARACTERISTIC CONCERNS 

This section raises a number of issues arising from the above. These serve 
to illustrate the types of problems that can arise in the development of 
Large Software Systems. 

10.1 External Constraints: The laws of physics are fixed. There is a finite 
amount of airspace in the FIR and airports are sited according to 
sociological and political demands. Although there is scope for increasing 
air space utilisation this requires changes in ATC procedures and system 
support. New ATC procedures have to be modeled carefully to establish 
the benefits. Sometimes extensive live simulations are used which also 
assist in the specification of the system changes. Furthermore changes in 
airspace structure and ATC procedure are constrained by international 
agreement. This illustrates international constraints. 

10.2 Intuitive Skill Problem Domain: The overall integrity of the current 
system depends heavily upon the skill and motivation of the Air Traffic 
Controllers. The former is established by extensive training and validation 
on a particular sector before a controller is permitted to undertake radar 
control at that sector. This indicates that it is difficult to define the ATC 
role in formal terms. 

10.3 Complex Human Computer Interface: ATC is done by closely knit teams. 
The efficiency of the team is greatly affected by the system Human 
Computer Interface. Motivation could be undermined by injudicious use 
of computer support. Computers are good at routine monitoring tasks 
whereas humans cope well with exceptions. Over-dependence on the 
computer may lead a controller into not fully assimilating the air space 
picture which in turn may result in a dangerous situation when the 
computer fails. Generation of false alerts can be very disruptive. It is also 
important that unsolicited changes to flight data are effectively notified to 
the controller. 

10.4 Historical Functional Decomposition: The role of an established ATCC in 
the FIR will have evolved over decades. En-route and off-route traffic 
have different characteristics. Civil and military controllers have different 
organisational ethos. These factors lead to different functional emphases 
which in turn may lead historically to suboptimal functional structures. 

10.5 Historical Design Architecture: The diverse technical requirements at an 
established ATCC will have been satisfied by different engineering groups 
over the decades. This as above may lead to a suboptimal ATCC 
architecture which reflects the engineering and procurement 
organisational structure. 



www.manaraa.com

132 

10.6 Lack of Control Over Data Capture: There are a number of problems 
associated with the capture of flight plans as they arrive from sources on 
worldwide networks. Although they are based on the ICAO international 
format their quality varies considerably ego route fields are inadequate to 
derive FIR and sector involvement. Flight plan amendments arise from 
similar sources and these can lead to duplicate plans which are similar but 
not identical. 

10.7 Flexible Data Display: Display of flight data is not standardised. 
Predominantly civil ATC use printed flight progress strips. These are 
resilient to power failure and are easily amended with coloured pens. The 
strip is slotted into a strip holder which .forms a very effective physical 
token which is moved manually around a flight strip progress board in 
relation to the aircraft's general position in the air space. Military ATC has 
much experience with the electronic display of flight information. These 
displays are smaller and can even be integrated with the radar display. 
They are updated interactively with the computer which enables an up to 
date flight database to be maintained. This in turn is interrogated by other 
controllers who need to know the intentions of aircraft not under their 
control. 

10.8 Integrated Remote and Central Processing: Local tracking is performed at 
the radar head in order to correlate plots over successive scans. Local track 
numbers would assist in resolving ambiguity in plot to track association in 
central RDP. They would also enable quicker track initiation. Mode 5 is a 
new SSR interrogation technology which greatly reduces SSR radio space 
pollution. It interrogates individual aircraft. However, it must emit an all
call interrogation to capture new aircraft and individual Mode 5 ground 
stations must pass these identities on to other stations. This represents 
wide area distributed RDP processing which overlaps central multiple 
RDP. 

10.9 Long Processing Chains: The physical radar return undergoes many 
transformations before it is displayed to the Radar Controller as 
representing the actual aircraft position. More rigorous specification 
techniques could be used to minimise the risk of error at each step. 

10.10 Complex Data Fusion: In central RDP there are a variety of techniques in 
fusing radar data from several radar sites. These range in computational 
effort. The simplest is to allocate preferred radar coverage to discrete 
volumes of airspace and pass only those plots on to the tracking process. 
Full multi-radar tracking is optimal, but computationally expensive. A 
complex smoothing filter is needed to handle different error variances at 
irregular time intervals. For each aircraft a system track is updated by all 
correlating plots. 



www.manaraa.com

133 

10.11 High Integration Architecture: Full integration of functions leads to 
greater impact on the ATCC when a subsystem fails. Transition 
management of system changes is more difficult. The management of 
redundant intra-centre networks is complex - particularly when the 
impact on operations is to be minimised. 

10.12 Systems Planning: The strategic planning of the development of systems 
in an ATCC requires the capture of a functional and architectural design in 
a structured fashion that aids visibility of design change proposals. As 
there will be several development programmes in place, each at different 
stages in a timescale of several years, these planned designs need to be 
correlated. Owing to the size and complexity of such programmes modern 
computer aid is necessary to make this process effective. 

10.13 Software Engineering Standard: Subsystems at an ATCC will have been 
built over the decades with a variety of Software Engineering methods. 
The advantages of standardisation are recognised, but it currently unclear 
upon which particular approach it would be reasonable to standardise, 
bearing in mind the scale of the above applications. 

11. CONCLUSION 

11.1 A contemporary ATCC has been illustrated as a Large Software System. A 
number of issues relating to its development have also been discussed. 
These concerns take on greater significance when it is appreciated that 
ever more performance is being demanded without jeopardising the 
integrity of the ATC service provided. Furthermore these issues are of 
general public concern. 



www.manaraa.com

134 

Fig 1. SIMPLIFIED AIR SPACE STRUCTURE 

FLIGHT INFORMATION REGION 

MIDDLE AIR SPACE 

OFF-ROUTE 

TERMINAL MANEOUVERING AREA 

CONTROL ZONE 
EN ROUTE ==t CONTROLLED AIR 

AIRWAY SPACE 

AIRPORT 

ATC 
CENTRE 

PLAN VIEW 

UPPER AIR SPACE 25,000 It 

CONTROLLED AIR SPACE AIRWAY 

15000 It 
TERMINAL MANEOUVERING AREA 

5,000 It 

.-------------, 
, ' 

CONTRO.L ZONE :'-__ ---I 2,500 It 

LOWER AIR SPACE Oft 

ELEVATION VIEW 



www.manaraa.com

135 



www.manaraa.com

Fi
g 

3.
 O

V
E

R
V

IE
W

 O
F

 F
L

IG
H

T
 A

N
D

 R
A

D
A

R
 D

P
T

A
 P

R
O

C
E

S
S

IN
G

 

c
rL

:J
--

o o 
IF

li9
ht

 
o 

D
at

a 
N

et
w

or
k 

rre
O 

• 

~
-
-
-

F
lig

ht
 D

at
a 

P
ro

ce
ss

in
g 

F
lig

ht
! 

R
ad

ar
 

D
a

ta
 

B
as

e 

R
ad

ar
 

D
at

a 
P

ro
ce

ss
in

g 

W
 

0
\ 



www.manaraa.com

-
R

E
M

O
T

E
 

Fi
g 

4.
 F

L
IG

H
T

 D
A

T
A

 P
R

O
C

E
S

S
IN

G
 C

H
A

IN
 

~
-

In
iti

al
 

P
re

 
In

 R
ec

ep
tio

r 
F

lig
h

t 
A

ct
iv

at
io

n 
P

la
n

 
P

ro
ce

ss
in

g 
P

ro
ce

ss
in

g
 

~
 

0 ! Q
) z '" "iii 0 .E
 

en
 

[E
 

A
d

ja
ce

n
t 

A
T

C
C

s 

Fl
ig

h
t 

P
la

n
 

A
ct

iv
at

io
n!

 
T

e
rm

in
at

io
n 

A
ct

iv
e 

a
n

d
 

P
as

si
ve

 
F

lig
h

t 
D

a
ta

 B
as

e 

F
lo

w
 

R
e

g
u

la
tio

n
 P

ro
p

o
se

d
 

F
lig

ht
 D

at
a 

A
ct

iv
e 

D
is

tr
ib

u
tio

n
 

-
A

ct
iv

e 
P

la
n

 
P

ro
ce

ss
in

g
 

M
e

te
o

ro
lo

g
ic

a
l 

In
fo

rm
at

io
n 

F
lig

ht
 

D
a

ta
 

D
is

p
la

y 

U
p

d
a

te
 

D
ep

ar
tu

re
 

R
eq

ue
st

 
D

is
p

la
y 

-I-
c,

,"
" 

·1-
'"

"'
-

.- I.
;.

) 

-.
J 



www.manaraa.com

A
lr

o
ra

ll
 

P
rl

m
a

r)
' 

R
_

 -
"
I
 

S
u

rv
ei

lla
n

ce
 

R
od

 ..
 

Fi
g 

5
. 

R
A

D
A

R
 D

A
T

A
 P

R
O

C
E

S
S

IN
G

 C
H

A
IN

 

i ~ J 

A
ct

iv
e 

an
d 

P
aa

lJ
ve

 
F

lig
h

t 
0

aI
a 
..

..
. 

• 
R

E
M

IT
E

 
• 

I •
 

C
I3

'lT
R

A
l 

_I
_ 

SU
IT

E
 

-

w
 

0
0

 



www.manaraa.com

Fi
g 

6.
 

IN
T

E
G

R
A

T
E

D
 F

L
IG

H
T

 A
N

D
 R

A
D

A
R

 D
A

T
A

 P
R

O
C

E
S

S
IN

G
 

In
te

r 
C

e
n

tr
e

 C
o

m
m

u
n

ic
a

tio
n

s 

C
e

n
tr

a
l 

F
lig

ht
 

R
a

d
a

r 
F

lig
ht

 
a

n
d

 R
a

d
a

r 
D

a
ta

 
D

at
a 

D
a

ta
 P

ro
ce

ss
in

g 
.....

. 
w

 '" 

In
tr

a 
C

e
n

tr
e

 C
o

m
m

u
n

ic
a

tio
n

s 

S
ui

te
 F

lig
ht

 
an

d 
R

ad
ar

 
0 

0 
0 

D
at

a 
D

is
pl

ay
 

'
-
-
-

-
~
-
~
-
-



www.manaraa.com

140 

Fig 7. SIMPLIFIED SUBSYSTEM LIFE CYCLE 

Programme 
Management 

Corporate "Planning 

Strategic Planning 

Operations 
Management 

Subsystem Life Cycle 

IrspeC;fiC.';O", 
Quality + Project 

Management Procurement Management 

Configuration +.---J 
Management Operation 

L.-._~_~ Replacement 



www.manaraa.com

6 
AN ARCHITECTURE FOR MULTI-VENDOR SYSTEMS 

JOHN DOBSON 

Computing Laboratory 
University of Newcastle upon Tyne 

NEWCASTLE NEl 7RU 

ABSTRACT 

The Integrated Systems Architecture (ISA) project is a major ESPRIT 
project which is intended to provide an architecture for 
interworking computer systems that embodies and exploits the best 
distributed computing system concepts, and that plans to provide a 
basis of future international standards in the area of open 
distributed processing. 

1. OVERVIEW OF THE ISA PROJECT 

The ISA project has the prime objective of the establishment of open 
international standards for interfacing applications operating with 
distributed resources that come from more than one supplier. 

Specification of standards without feedback from practical 
implementations can lead to flawed and impractical standards. It is 
necessary to ensure the widest possible validation of the concepts and 
specifics of standards before they emerge from the necessarily protracted 
standardisation process. 

As the enabling electronics technology (semiconductors, fibre optics, etc.) 
continues to press ahead remorselessly, and the availability of this 

141 



www.manaraa.com

142 

technology is continually expressed in new products and services (e.g. 
multi-media communications carrying data, sound and vision), standards 
must be produced that apply to these new technologies. This requires that 
the framework of the ISA project has to take into consideration today's 
futures which will be tomorrow's actuality. 

The work done in the Alvey and the (first phase of the) ESPRIT research 
programmes showed that it is possible to produce a reference model for 
distributed processing systems that is comprehensive. That model must 
be produced and agreed by all the projects and manufacturers working in 
the various different domains of distribution, since it is the framework in 
which both current and future work must reside. The ISA project has 
undertaken to produce this framework and agree it with the other projects 
working in the field. 

Once produced and agreed, the model will then be freely available to all 
active workers, be they academic, industrial collaborative research, 
industrial collaborative technology implementations, or purely 
commercial implementations. The early transfer from research and 
advanced development projects to actual implementations provides 
much of the feedback necessary to invest the standards process with 
practical demonstrations of applicability that are needed to underwrite the 
quality and validity of the standards. 

The ISA project will undertake some practical work of its own both to 
investigate difficult concepts before they are promulgated and to assist 
other workers to more readily take up and pursue those concepts in their 
own implementations. The ISA project will make the results of this work 
available both in a written form (Le. a manual), and in the availability of 
source code. The objective for this activity is to assist European industry to 
move rapidly, and with an informed understanding, to the provision of 
products and services for open distributed applications executing on 
multi-vendor systems. In order to facilitate both this objective and the 
generation of open standards openly arrived at, the ISA project will 
impose no constraints whatever of the kind associated with intellectual 
property rights. 

2. INTEGRATION and STANDARDS 

The ISA project has two themes: integration and standards. It will enable 
the integration of application systems from multiple vendors both by 
creating a set of common architectural constructs for distributed 
computing systems and by utilising these constructs in the development 
of standards. The evidence for the achievement of integration will be the 
development of practical demonstrations of application interworking, 
based on standards derived from the project. 

The project will concentrate on enabling rather than providing integration; 
that is, it will concentrate its efforts on defining models, interfaces and 
standards based on work already done by other distributed system projects 
so as to create a common infrastructure or platform through which 
separate applications can achieve true interworking. The ISA project will 



www.manaraa.com

143 

seek acceptance of its results by other projects in the distributed systems 
arena (in all application domains). It will encourage those projects to 
implement the functional interfaces defined by ISA which will be needed 
to generate practical application products. 

The many applications that form an integrated system will not only 
require different functionality from the supporting infrastructure, but will 
also place differing emphases on quality attributes such as response time, 
throughput, security, and reliability. This in turn demands a unified 
approach which pays careful attention to many technical, human and 
managerial issues, and treats them all as facets of a single architecture. 
The ISA project will use such an approach to define an organised selection 
of solutions to a wide range of common integrated processing problems. 

3. DIVERSITY and FRAGMENTATION 

3.1 Diversity 

Human organisations are distributed in nature: people work in different 
places and information is acquired and stored at different locations. 
People increasingly rely on computers in their work, and efficient user 
support, providing fast response to user actions, can be provided by a 
distributed computer system which reflects the distribution of the human 
organisation it serves. 

But human organisations are subject to changes and these too must be 
accommodated by the computer systems supporting those organisations. 
Also, technology will provide opportunities to develop computers with 
new functions and improved performance. Whilst enterprises may wish 
in time to replace old equipment with new, the related costs and effort 
involved are likely to become prohibitive since technology is changing so 
rapidly. Instead, owners will call for gradual and continual evolution of 
their systems, and consequently systems will be thought of as collections of 
distributed components rather than as a single resource. 

Integrating multiple computers of the same type is relatively easy. Such 
computers can be combined so that to the application designer they appear 
to be one very large computer. Application designers can then exploit 
existing application design processes for non-distributed applications. 

But this approach does not always lead to satisfactory solutions, because 
different applications lead to different operational requirements. For 
example, factory automation applications require real time response and a 
high degree of reliability; applications in the design department may 
require high security but place fewer constraints on timeliness. This 
diversity of application requirements demands a diversity of hardware 
and software support; and this heterogeneity in turn complicates the 
design of a distributed system and the integration of its parts. 



www.manaraa.com

144 

3.2 Fragmentation 

At the moment there is no public architecture for building distributed 
systems on a multi-vendor basis which can span multiple application 
domains. It is just about possible to install a multi-vendor system in a 
single application domain where standards are relatively mature (e.g. 
office applications, CIM) and where the manufacturers have a common 
forum for determining agreement (e.g. ECMA). However, the increasing 
importance of value-added network services and the extension of the 
computing arena from offices and factories into homes and schools means 
that there is a real need for a common architectural approach which 
incorporates the very Significant differences in policies and patterns of 
communication arising from these extensions. There has not yet been 
much opportunity to integrate the technology used in the domains of 
computing, telecommunications, and value-added networks. 

Another aspect of the problem of fragmentation is that European IT 
companies are at a disadvantage in the breadth of products they can supply 
to meet the new demands in the expanding areas, by virtue of their 
smaller size compared with the market leaders in Japan and the USA 
Since European companies are not able to compete in breadth, they 
concentrate on their undoubted capacity for specialisation in depth. In 
many cases, however, this specialisation has been done in isolation. There 
is now a need to provide some common architectural framework that will 
enable system integrators to focus on a particular market area. The 
European IT industry therefore needs an enabling mechanism to provide 
scope for market-specific suppliers to survive by selling to a wide range of 
industries and system integrators, and a structure to aid integration of 
market-specific components from different suppliers in different countries 
servicing different application domains. 

It is important to recognise that the scope of this problem is wider than 
that of mere communications interconnection, a sub-problem which can 
be solved (at least at the lower levels of the OSI Reference Model) by 
building subsystems conformant to the standard protocol definitions. 
Integration at the system level requires careful attention to issues such as 
information, processing, communications, distribution, management and 
administration, specification, human factors, and the application 
environment. Currently these are treated piecemeal whereas what is 
required is an architectural approach which treats them all as facets of a 
single problem. 

4. STANDARDS and INTEGRATION 

4.1 Standards 

Standards first emerged in the field of engineering. Bodies were formed to 
agree such things as dimensions for mechanical parts and engineering 



www.manaraa.com

145 

practices. In this form of standardisation, the issues are well-understood 
and the task is one of choosing between alternatives. 

The IT industry in Open Systems Interconnection (OSI) standardisation 
started in a similar way. The OSI Reference Model was developed by 
analysis of extant proprietary and CCITT communications protocols, and 
many of the OSI layer standards were achieved by selecting from protocols 
that existed at the time with only minor modification. The OSI standards, 
including the Reference Model, are currently under the control of the 
lSO/IEC subcommittee JTCl/SC21 . 

OSI has assumed importance in the IT industry since it opens up an 
alternative communications platform to proprietary standards. Before 
OSI, vendors of communications-related applications typically announced 
them for specific proprietary standards. This had the effect of benefitting 
the providers of those standards to the detriment of other suppliers. With 
OS!. vendors have joined together to achieve an OSI platform at least as 
important to application providers as any proprietary standard. 

There has been a consequent effort to extend OSI standards to achieve 
extended communications functions, such as transaction processing, 
electronic mail, office document transfer, and so forth. Many of these are 
relatively new areas with which there has been but little practical 
experience. Consequently ISO committees often find themselves 
inventing standards rather than choosing them. This is a dangerous 
strategy, since the vendors who align themselves with OSI now depend 
upon the technical expertise of committees with changing memberships 
that meet barely four times a year and are distracted from their technical 
goals by the intense politics of international standards making. 

Within Europe a new approach to standards making has begun, illustrated 
by the X/Open consortium. Here the industry has come together and 
funded a technical group to develop and extend Unix within the forum of 
X/Open members. In this way momentum and excellence is maintained 
since there is a permanent group devoted to technical progress. 

X/Open is developing an applications platform based on Unix. Unix is a 
mature system and its origin is as an operating system for a standalone 
machine. However, a new generation of operating systems has emerged 
which is oriented towards distributed processing (MACH, CHORUS, 
AMOEBA, V etc.). These operating systems are qualitatively different 
from UNIX and place greater emphasis on performance and distribution. 
It is these sorts of operating system that will be the foundation of future 
high performance distributed processing. It is imperative that work be 
done in a similar fashion to X/Open for this next generation of systems so 
that they can be developed into products with guaranteed interworking 
sooner rather than later. Fortunately for product evolution, most of these 
systems are able to emulate UNIX with no loss of function (and 
sometimes increased performance). 



www.manaraa.com

146 

4.2 Integration 

This section highlights some of the techniques available for integration 
that are considered important by the ISA project. 

4.2.1 Programming languages 

Distributed processing can be made more accessible to the programmer by 
adding distributed processing features to language libraries and 
compilation systems. This is possible if distributed processing functions 
are presented as extensions to, or refinements of, the data and control 
structures found in conventional programming languages. At the leading 
edge of this approach are the various object-oriented programming 
languages, several of which both support distributed processing and 
embody the benefits of a rich type structure. 

4.2.2 Remote procedure call 

Remote procedure call (RPC) has become dominant as a way of providing 
communications from local to remote processes. RPC enables a client 
program running on one computer to invoke server processes on another, 
potentially remote, computer in a way that conceals whether or not the 
client and server processes are co-located. 

4.2.3 Parallelism 

RPC and similar techniques have made possible the design of distributed 
programs. In distributed programs there is potential for parallelism and 
this has led to much research into the problems of consistency: the private 
data associated with each process must be protected from interference by 
other processes; access to shared resources must be carefully controlled if 
chaos is not to result. Much work has been done on advanced transaction
based systems drawing on record-locking techniques. Another approach, 
having the same goal of ensuring atomicity, is that of optimistic 
concurrency. 

Distributed programs also provide the opportunity for replicating a 
program in different locations in order to improve dependability and 
performance, and have also been employed in fault-tolerant systems. 
Bulletin boards extend the concept of a replicated object and lead to a 
decentralised approach to programming where several computers co
operate to achieve a common goal. 



www.manaraa.com

147 

4.2.4 Operating systems 

Distributed processing requires the coupling together of the local operating 
systems in the networked information system so as to provide a global 
network level operating system. This is facilitated by the techniques 
mentioned above and also by a number of trends in the design of 
operating system resources: large virtual memories, lightweight processes, 
and fast interprocess communications. 

Two styles of extending operating systems of networked computers into an 
integrated distributed environment have emerged: networked operating 
systems (e.g. ACCENT, AMOEBA, CHORUS, MACH and V) and 
distributed operating systems (e.g. EDEN and EMERALD). In networked 
operating systems the linked computers preserve much of their autonomy 
and are managed by interaction with their local operating system; 
however, all resources are uniformly accessible on whichever system they 
are located. In distributed operating systems, system management is 
global, and individual computers have little autonomy. This is possible 
only where there is tight coupling between the operating system kernels of 
the systems involved. 

A number of experiments have been made to explore how UNIX could be 
extended to provide a distributed operating system (e.g. LOCUS, UNIX 
UNITED). Such systems offer greater performance and dependability than 
a single node UNIX system since several computers are used to support it. 
They provide mechanisms within the kernels of the interconnected UNIX 
systems which give the user the illusion of a single large UNIX system, 
insulating the applications programmer from any of the effects of 
distribution. This has the great merit that applications written for 
ordinary UNIX can run unchanged in the distributed UNIX environment. 

4.2.5 Protocols 

Many aspects of protocol design have been revisited using systems 
engineering techniques rather than traditional communications 
engineering. The application of end-to-end principles has led to a focus on 
reducing buffer management and processing overheads at network nodes. 
Consequent review of the layering of protocol implementations together 
with simplification of the protocols has allowed the implementation to be 
moved out of processors into microprocessor-based network interface 
units. 

4.2.6 Multi-media integration 

Most kinds of information-related activity involve mixtures of data, text, 
pictures, graphs, charts, the spoken word, and synchronised sound and 
vision. People work naturally with multiple media, and have always been 



www.manaraa.com

148 

able to do so until the limitations of information technology raised an 
artificial barrier. 

Many networking technologies can now transport both isochronous forms 
of information (voice, video) and anisochronous information (image, . 
graphics, text, data). Several systems have been built to support 
interactions involving all these forms of information in an integrated 
fashion (for example within a conferencing application). 

5. SYSTEM ARCHITECTURE 

As indicated in the previous section, the subject of integrated system 
architecture is beginning to receive considerable attention. The increased 
scope of design and levels of complexity of integrated systems 
implementations are forcing the use of some set of logical constructs for 
defining and controlling the interfaces and integration of all the 
components of a computing system. Since our current technology permits 
the distribution of large amounts of computing resource in small packages 
to remote locations, some kind of architectural structure is imperative, 
because decentralisation without structure is dis-integration. In this and 
the following sections the ISA framework for rationalising the various 
architectural concepts and specifications is explained. This framework is 
seen as being necessary to enable clarity of professional communication, to 
enable improvement and integration of distributed development 
methodologies and applications, and to enable agreement on a set of 
standards which reflects the common culture of the European approach to 
integrated systems architecture. 

5.1 The Role of an Architecture 

The role of a systems architecture is to systematise practical experience into 
an engineering design discipline. A systems architecture is not simply a 
descriptive tool: it creates a style and an essential logic of design which 
allows common use of both components and design methods. 

The creators of an architecture must analyse possible, proposed, and 
existing solutions to design problems. The analysis must identify both the 
common functions found in different solutions and any common 
configurations of function. Once found and described, the functions and 
configurations can be named and this can clarify the dialogues between 
designers and system owners and hence reduce the burden of design work. 
The architect's job is then to summarise, analyse and systematise 
knowledge and experience about the functions of the systems and their 
components. 



www.manaraa.com

149 

5.2 The Contents of an Architecture 

An architecture contains both a set of concepts and a method for 
modelling a system in terms of those concepts. These are required to 
support a description of the constraints that the architecture places upon a 
designer when decomposing design problems and composing systems 
from subsystems and components. The constraints are expressed as a set 
of components, rules, recipes and guidelines, together with a set of formal 
notations which are used to express or represent the design. 

The components are "standard" system building blocks. A set of 
relationships may exist between these components, and a set of rules 
constrains how the components may be related and hence the design 
choices open to the designer. These rules form the conformance criteria: 
any model satisfying all the rules conforms to the architecture; and a 
system conforms to the architecture if it is a correct implementation of a 
conformant model. Non-conformance is more likely to lead to failure 
when the system is in service. 

The recipes describe useful structures of components to meet particular 
needs. They represent particular ways to satisfy design requirements 
effectively. The use of recipes should reduce design effort and provide 
extensions to the architectural style, but is not mandatory. It is likely that 
components used in recipes will become the most widely available ones, 
since following the recipes will be a quick way to design a system. 

The guidelines explain how components and recipes can be applied to 
tackle problems of design, and why the rules are reasonable constraints on 
designs. They explain the problems that can be encountered and how they 
can be avoided; and they give general techniques for constructing models 
of systems rather than the more explicit instructions that are contained in 
the recipes. 

An architecture, then, is not an abstract design for some universal distributed 
system but rather a designer's toolbox of useful components and standard 
constructions. A single system design could not scale to span all possible 
distributed processing requirements; instead, the ISA project will provide 
the designer with an organised selection of solutions to a wide range of 
distributed processsing problems. The designer must make an appropriate 
selection and estimate the necessary trade-offs between interworking 
capability (by restricting the choices available) and optimisation of quality 
attributes (which requires flexibility of choice). 

5.3 The Process of Architecture 

As mentioned in the previous subsection, the results of an architecture 
can be expressed in the form of components, rules, recipes, guidelines and 
constraints. These results have to be developed as the outcome of some 
architectural process. Some existing architectural projects have analysed 



www.manaraa.com

150 

the evolution of their work, and have arrived at a view of the 
architectural design process as consisting of five distinct phases. These 
phases do not always follow in strict sequence, and thought often goes back 
and forth between the phases. Nevertheless, it is usually found possible to 
ascribe any instant in an individual's activity or thought to one or other of 
these phases; and in general they do follow each other roughly in the 
sequence outlined. 

The first phase consists of development of concepts and theories. During 
this phase, ideas are examined, refined and rejected; key ideas emerge and 
are seen in relation to each other; a vocabulary is defined, using natural 
language or some (semi-formal) restricted variant. The purpose of this 
stage is mainly to define what the architecture is for ; that is, its relation to 
human intentions and concerns as reflected in the basic concepts that are 
expressed by the vocabulary. 

During the second phase, the concepts and their relations are cast into a 
more formal language, possibly with some simplifying abstractions and 
assumptions. In some projects, the expression of this stage takes the form 
of a 'reference manual' or 'reference model'. The purpose of the manual 
or model is to define what the architecture is about; that is, what can be 
said in the language of the architecture. 

During the third phase of the architectural process, the formal expression 
defined during the previous phase is used to generate the specifications of 
the basic architectural components and the rules which explain and 
constrain how they are to be constructed and combined. 

During the fourth phase, a prototype or demonstrator is designed together 
with the essential instrumentation which will allow the architect to 
measure performance, determine the site of problems or inefficiencies, 
and quantify its dependability. This is a phase in which tools are of prime 
importance: tools to build, to measure and to analyse. 

During the fifth phase of an architectural project, the prototype is built, 
exercised, measured and demonstrated. The purpose of this phase is 
validation of the adequacy and suitability of the architectural concepts for 
their intended purpose, rather than the demonstration of a marketable 
product. 

6. PROJECTIONS FOR SYSTEM MODELLING 

As mentioned previously, existing architecture projects have begun to co
operate and to analyse their results. This analYSis has also revealed five 
styles, or projections, for describing systems. These are called the enterprise, 
information, computational, engineering, and material projections. Each 
projection has its own viewpoint on the nature of distributed processing, 
its own set of concepts and language, and its own set of decisions to be 
made during system design. Every computer system can be described in 
each of these projections, each description having a different purpose. 



www.manaraa.com

151 

6.1 Enterprise Projection 

A model in the enterprise projection explains and justifies the role of the 
computer system within the whole organisation. Enterprise models 
describe people's and systems' actions, goals and policies, and embody a set 
of statements about the organisation's missions and values. Design 
decisions made in the enterprise projection address what the system is to 
do rather than how it is to do it, and requirements are expressed purely in 
functional terms. 

6.2 Information Projection 

A model in the information projection identifies and locates information 
and describes information processing activities. The value of information 
to modern business makes this model useful to managers as well as 
designers. Information models enable analysts to describe enterprises, 
including any distributed systems operating within them, in terms of 
information resources and information processors. Such models describe 
the structure, interpretation, value, timeliness, and consistency of the 
information (possibly from multiple sources) that can be collected, 
processed, and presented in different places at different times. Design in 
the information projection concerns the nature and role of information in 
the system, and the design decisions are epistemological in nature: who 
knows what, and where can information flow? 

6.3 Computational Projection 

Computational models help programmers by structuring programs for 
modularity and parallelism, for integrating separate applications into 
packages, and for making programs independent of the computers and 
networks on which they run. These models provide a description of the 
system which explains how integrated application programs may be 
written for it. The description is in terms of information representations, 
programming languages, system services, and program specifications. 

6.4 Engineering Projection 

An engineering model describes distributed systems in such a way that 
designers can reason about the performance of the systems built to their 
designs: e.g. whether efficient use of system resources is achieved. 
Engineering models define families of system building blocks and explain 
how to interconnect and organise them. Engineering level decisions 
concern trade-offs between quality attributes such as performance, 
dependability, and scaling. 



www.manaraa.com

152 

6.5 Material Projection 

Models in the material projection act as blueprints of systems during their 
construction and maintenance. They are intended for the use of system 
builders, and are expressed in terms of physically realisable components 
and standard interfaces. 

6.6 Common Foundations 

Each projection represents a particular viewpoint of distributed processing 
and each has difficulty addressing the concepts used by the others. 
Historically, each viewpoint has been developed separately from the 
others with little interaction between them. It is important to realise that 
a system must ultimately be modelled from all viewpoints 
simultaneously; each viewpoint is equally valid and it is meaningless to 
argue which is the most fundamental. However, the projections will not 
be of equal significance in any specific context. 

The main reason for the historical separation in that there is no common 
foundation for expressing the interactions and relationships between the 
projections. This lack of a common foundation is an architectural issue 
that is being taken very seriously in the ISA project. The models resulting 
from the five projections contain similar logical constructs. These have 
been explored and a common logic developed, capable of describing all of 
them. Although the five projections are related in complex ways, by 
developing this common foundational logic, the task of managing the 
projections becomes tractable. 

7. TECHNICAL ASSUMPTIONS FOR ISA 

Although the ISA project is most definitely not a project to build a 
distributed operating system for its own sake, the architectural approach to 
the design of an integrated system clearly requires a distributed operating 
system as a prerequisite. Common to nearly all recent distributed 
operating systems are two assumptions that will be adopted for the design 
of ISA. The first assumption is that communications bandwidth is 
increasing and that network throughput is becoming less of an important 
constraint than network latency. The second assumption is that processes 
can be inexpensive. This requires operating system support for 
lightweight processes and requires that each such process be able to 
communicate with remote processes easily and efficiently. However, both 
of these assumptions lead to problems of scaling in large distributed 
systems. This tradeoff is also being investigated by the project, since it is 
intended that the ISA architecture be equally applicable to very large 
networks. 



www.manaraa.com

153 

Several engineering principles are common to the technical 
developments reviewed earlier, and these will be adopted for ISA: 
encapsulation, indirect binding, strong typing, distribution transparency, 
dependability, performance optimisation, and language integration. 

Encapsulation requires that program module boundaries should be 
enforced by 'firewalls', either through hardware protection domains, 
through strict compile time checking, or through some combination of 
both. 

Indirect binding is the provision of communications via intermediate 
objects. Indirect binding permits further objects to be transparently 
inserted into the binding to cope with remoteness and heterogeneity. 

Strong typing insists that access to objects should be via interfaces which 
are specified independently of the implementation of the objects and that 
a binding between a set of objects is possible only if they have consistent 
interfaces. 

Distribution transparency is the provision of mechanisms that cope 
with the complexities of distributed processing and that provide the 
programmer with a high-level set of application-oriented primitives so as 
to enable the programmer to exploit distribution to good effect. 

Dependability is that property of systems that justifies users in placing 
reliance on the services they deliver. Dependability includes reliability, 
availability, security and safety. Reliability can be achieved by the use of 
design diversity and various other mechanisms; availability by the use of 
replication techniques, and security by the use of encapsulation and 
encryption techniques. Safety can be enhanced by these measures, but is 
ultimately a system design and specification problem. 

Performance optimisation is achieved by using parallelism, the 
deployment of caches, process switching, end-to-end handshakes and the 
avoidance of data copying, so as to overcome network and operating 
system delays to remote operations. 

Scaling is the art of designing systems which neither occur high 
overheads nor break down as the number of computers involved 
increases or as their interconnectivity changes (for example because of 
increased physical separation). 

Language integration requires that distributed processing be accessible to 
programmers in terms of the control and data structures of ordinary 
programming languages. A distributed system should be an extension of 
the programming language development and run-time environments. 

To provide a standard applications interface and yet allow for a variety of 
requirements, ISA will define a set of architectural building blocks which 
may be used to build interfaces between application programs and other 
parts of the distributed system in order to provide the basic infrastructure 
functions. These components will hide the complexity of aspects of the 
distributed nature of the system. 



www.manaraa.com

154 

The figure below provides a simplified illustration of the relationship 
between the components in a typical ISA system. The base and operating 
systems represent the computers and networks used to provide the 
processing, memory and communications capability. The ISA nucleus 
components provide the minimal level of support to applications. The 
services in each nucleus co-operate to provide an applications platform 
spanning the base systems. The ISA components that provide transparency 
make use of the support for distributed processing provided through the 
platform and provide a transparent interface to the applications. Together, 
the ISA components help support applications on geographically dispersed, 
heterogeneous computing components and allow for interworking between 
applications. 

~ 
~ 
~ 
~ 

~ 
~ 

interworking 

applica ti ons 

ISA 
transparency 
mechanisms 

ISA 
platform 

ISA 
nucleus 

operating 
systems 

base system 
(technology) 

Provision of a common architectural framework, though necessary for 
communication between design teams, is not sufficient to enable 
communication between applications. It is a starting point of the ISA 
project that although an architecture should provide a reference model, it 
is more than a set of architectural statements about the reference model; it 
must also show the reference model in application and use. The ISA 
project will therefore make public and explicit all aspects of its 
architecture, including in particular the application platform interface, so 
as to encourage the common culture of practical applications integration. 



www.manaraa.com

155 

8. SUMMARY OF THE ISA PROJECT 

In summary, therefore, the architectural goals of the ISA project are 
threefold: 

1) A standardisation goal is to achieve international standardisation of the 
application interface (Le. the upper level of the ISA platform and 
transparency mechanisms). 

2) A collaboration goal is to work jointly with application oriented projects 
to ensure that the architecture adequately provides the platform they 
assume and to assist them in the design and construction of their own 
platforms. 

3) A development goal is to demonstrate implementations of the ISA 
platform within the context of a set of applications capable of being turned 
into products at an early date. 

ACKNOWLEDGEMENTS 

The ISA project is closely knit and collaborative. The words used in this 
paper are the several and joint efforts of the whole project team rather 
than those of the nominal author. Nevertheless, although he cannot 
claim any credit in reusing the words of others, the author as spokesman 
must take the blame for their deficiencies. 



www.manaraa.com

7 
INCREMENTAL DEVELOPMENT AND DELIVERY 

FOR LARGE SOFTWARE SYSTEMS 

DOROTHY R. GRAHAM 
Software Engineering Consultant 

Grove Consultants, 
Grove House, 40 Ryles Park Road, 

Macclesfield, England SKl1 8AH, UK 

ABSTRACT 

Life cycle models have arisen in order to bring control to the 
process of software development. Two aspects of life cycles have 
provided benefits: the ordering of development phases, and the 
modularisation of the development process to give discipline and 
control. The third aspect, production of systems monolithically, is 
not beneficial for large systems . 

Incremental development is the development of a system in a 
series of partial products, generally with increasing functionality. 
throughout the project timescale; incremental delivery gives those 
increments to the users when they are completed. An increment is 
complete when all the associated life cycle pr6ducts are finished, 
including testing, training, and documentation. There are significant 
benefits both for developers and users, but there are also significant 
problems. In particular, more discipline IS needed to manage 
incrementally, particularly good configuration management . 

An earlier paper [1] gave an extensive bibliography of 
incremental development and delivery. This paper summarises the 
types of incremental development with particular reference to large 
system development, and gives additional recent references . 

156 



www.manaraa.com

157 

INTRODUCTION 

Life Cycle models such as the Waterfall or V-models have been 
developed in order to bring control to the process of software 
productIon. There are three key aspects embodied in such models: 

- do things in a certain order (design before code, requirements 
before design, etc.) 

- modularise the process, so that "chunks" of work can be 
reviewed at checkpoints, i. e. increase discipline, apply 
standards, ensure documentation is done 

- deliver the entire system as the single end product of the 
entire development process 

It is my contention in this paper that the first two aspects of 
monolithic life cycle models have provided the benefits which have 
been achieved, but the third aspect does not scale up for large 
system development and may actually be detrimental . 

SOFTWARE DEVELOPMENT PROBLEMS 

Although significant improvements in the development of 
software systems have been achieved in recent years, there are still 
significant problems remaining . Monolithic software development is 
generally fixed at the earliest possible time, both in terms of cost and 
schedule. In order to meet tight contractual restrictions, the 
Requirements Specification is produced either before or soon after the 
start of development, and is then "frozen"; i. e. changes to the 
requIrements are strongly dIscouraged . 



www.manaraa.com

158 

Estimation 
It is difficult to estimate the cost, effort, time or size of large 

systems with a high degree of accuracy . This is not unique to 
software development projects, it also affects other engineering 
disciplines. Being able to foresee the future with unerring accuracy is 
not a task which is easily done, by people or by machines. The real 
world does not stand still while large systems are developed; new 
products and processes are discovered, underlying assumptions are 
invalidated, new laws are passed, and developers learn new things, 
which would have enabled them to build a better system, if only 
they had known those things at the beginning. It is a common 
experience at the end of development to know how it should have 
been done . 

Changing Requirements 
Knowing how it should have been done is also a common 

reaction of users when they first see the new system they have 
asked for. A widespread response when using the new system for the 
first time is : "That is not what I want". It is much easier to "know 
it when you see it" than to say what it is that you want before you 
see it. 

This effect occurs even when users have been extensively 
involved in specifying the system (but then they should add, "even 
though it is what I asked for"). User knowledge also grows 
throughout system development; the users cannot ask for what they 
will really need because they cannot see into the future with 
unerring accuracy either . 

The point is made by Floyd, Reisen and Schmidt that 
"requirements are not 'given' and therefore cannot, strictly speaking, 
be analyzed . II Rather, they ar,e gradually established through 
interaction between users and developers . [2] 



www.manaraa.com

159 

These two aspects of developing knowledge are illustrated in 
Figure 1 below . Both user knowledge and developer knowledge 
increase with time. System A, which is specified at the beginning of 
development reflects the minimum of that growing body of knowledge 
for both parties. System B is the system which the developer would 
have built with hindsight, and System C is the system which the 
customer would have asked for with hindsight . System D is the 
system which is actually required at the end of development . 

user 
know
ledge 

l:~~lt. C ......... ......... ........ a,:,_ 
IfIi!J1aD 

k1 A B 
41~!!~ __________________ ~·;~~~1~~~~;;,'-

tiMe a.;: developer knowledge 

Figure 1. Increasing knowledge throughout development. 

Testing and Maintenance 
Significant problems are experienced in the testing and 

maintenance of large systems. Testing typically takes 40% of the 
software development effort for any sized system, with testing of 
real-time systems often taking up to 80% of the development time . 
Testing of large software systems is difficult, but with the monolithic 
life cycle, the major dynamic execution testing of the software is 
done at the end of development . Verification and validation 
procedures help to produce better quality intermediate life cycle 
products, but they are no substitute for testing the real end product. 



www.manaraa.com

160 

If development takes longer than expected and schedules slip, 
then it is likely that testing will also take longer than expected. 
However, the end date has a tendency to remain fixed in time, so 
the testing schedule is compressed rather than extended. Problems 
which are built into the software are only discovered late in 
development, when there is no time to put them right. If testing is 
difficult, why do we leave it till last? 

With some types of development, testing is constrained by the 
development of hardware, for example, so that testing cannot be 
done early . However, other types of system could begin testing 
much earlier in the development timescale than the monolithic life 
cycle implies, with considerable benefits . 

Maintenance can typically account for 80% of the total system 
costs . A major aspect of the early maintenance of a finished system 
is to create the system which should have been asked for and built, 
if only users and developers had the benefit of hindsight . In the 
diagram above, System A is delivered, but maintenance then 
progresses the system to System D (and beyond). A frozen 
specification can only hope to meet a frozen need . 

Customer Confidence (lack of) 
Figure 2 below illustrates the confidence levels which occur with 

both monolithic and incremental development models. 

Confidence is initially high with both approaches, probably 
higher for the monolithic approach at the start because it is the 
accepted way to do things . 

During lengthy development, however, customer confidence 
drops off, as no working product is yet visible, developers talk in 
techno-speak, and delays are announced. If delivery of the system 
comes before all confidence is lost, there is hope of recovery, but if 
confidence goes below a certain point, then no matter how good the 
system is technically, it will not be accepted by users. 



www.manaraa.com

161 

This user resistance may be dormant during monolithic analysis 
and implementation, emerging when the system becomes operational, 
and taking the form of sabotage, scapegoating, or incorrect use of the 
system. [3] 

An incremental approach produces a working product much 
earlier than a monolithic approach . The initial reaction to seeing this 
is usually "This is not what I want", leading to an initial loss of 
confidence, although the delivery of an increment on time is 
generally a refreshing change for customers. 

By developing incrementally towards the needed system (rather 
than the specified system), confidence is restored to a high level 
which is then maintained and increased . 

user 
satls
feelton 

lIonol1thtc 

time 

Incremental 

Figure 2. Customer Confidence throughout development. 



www.manaraa.com

162 

THE THREE-DIMENSIONAL WATERFALL MODEL 

The Waterfall model is taken as illustrative and representative 
of monolithic life cycle models . It is usually shown in a form similar 
to Figure 3 below. The Requirements Specification (RS) should be 
done first, followed by System Design (SO), Detailed Design (DO), 
Code and Test (C&T) , and Integration and Test (I&T). 

RS 

so 

I&T 

Figure 3. The Waterfall Model 

Monolithic life cycle models recommend that each phase be 
completed before starting on the next phase. In practice, this never 
occurs; there is always some reworking of baselined products from 
previous phases . 

In monolithic development, the working system in its entirety is 
delivered at the end of the whole development process . 



www.manaraa.com

163 

The waterfall model does not show what is actually being 
recommended, however. It is really a two-dimensional 
representation of a three-dimensional object. A three-dimensional 
model, Figure 4, shows more accurately the time sequence of 
development. Each horizontal "slab" should be completed before 
starting on the next one. 

Figure 4. The Three-dimensional Waterfall Model . 

INCREMENTAL DEFINITIONS 

An incremental approach postpones detail in some or all 
phases to produce working software earlier in the project 
development timescale. The basic idea is to develop the system in a 
vertical slice rather than a horizontal slab . 

Incremental Development 
Incremental Development is the development of a system in a 

series of partial products (increments) throughout the project 
timescale. 



www.manaraa.com

164 

INCREMENTAL LIFE CYCLE MODELS 

Incremental Build and Test 

Figure 5. Incremental Build and Test. 

The incremental build and test approach begins the incremental 
development in the coding phase, with the previous phases being 
monolithic. Examples are given in Deutsch [4] and Wong [5] among 
others. 

Many developers go some way toward this approach informally, 
although often without the complete set of life cycle documentation. 
Since this is not what is recommended by the monolithic waterfall 
model, the developers may feel guilty that they are not following the 
model correctly; better results will be obtained from following the 
incremental build and test approach intentionally rather than 
accidentally. 



www.manaraa.com

165 

Incremental Delivery 
Incremental Delivery is the delivery of increments to the 

customer/users at intervals throughout the project timescale. 

Note : A system can be developed incrementally without being 
delivered incrementally to users, but not vice versa. 

Increment 
An Increment is a self-contained functional unit of software, 

together with all supporting material, including : 

- requirements specification, 
- design documentation, 
- test plans, cases and results, 
- user manuals and training, 
- estimates, plans, schedules, resourcing, 
- quality assurance information (e. g. review reports) 
- configuration management information . 

An increment produces (or alters) a cross-section of the final system 
deliverables, related to a functional portion of the final system . 

Incremental development is the construction of a software 
system in a series of small mini-life-cycles, rather than construction 
in one large monolithic life cycle. 

In the following sections, a number of incremental life cycle 
models are shown. 



www.manaraa.com

166 

Evolutionary Delivery 

Figure 6. Evolutionary Delivery 

Evolutionary delivery as described by Gilb [6] is shown in Figure 
6, and is the most extreme incremental approach, defining the 
increments from the top of the life cycle. Gilb's method includes 
incremental delivery as well as incremental development, and 
therefore has useful working facilities available to the customers much 
earlier than other life cycle models . 

The diagram shown actually does not do justice to the 
evolutionary delivery method, however, since there is a higher level 
process which precedes the incremental steps, consisting of setting 
system and business objectives, open architecture design, planning 
and quality assurance. 

The evolutionary deliveries are made at frequent intervals 
(possibly as small as a week), and consist of some function, facility, 
or organisational change which is useful to the customer and 
relatively easy to produce. In fact that ratio is used to determine the 
order of the increments. 



www.manaraa.com

167 

A major effect of evolutionary delivery is to elicit requests for 
change, mainly from users ("that isn't what we want"). However, 
these change requests may be "folded back" into the development 
process at significantly less cost than for monolithic models, for two 
reasons . First, change is expected and planned for, so it does not 
come as an unwelcome surprise. Secondly, when requirements have 
been completely detailed and designed (in the monolithic approach) , 
changes which are requested will affect the work already invested in 
the frozen specification. With incremental development, requested 
changes which affect those areas which have not yet been completely 
detailed, do not result in discarding work already done . Change can 
be turned to advantage, provided it is controlled. 

Framework Incremental Life Cycle 

Figure 7. Framework Incremental Life Cycle 



www.manaraa.com

168 

Just as one extreme being wrong does not imply that the other 
extreme is right, a framework incremental approach may be the 
"best of both worlds", by providing a compromise between the 
monolithic waterfall and Gilb's evolutionary delivery. Enough of the 
initial requirements specification and architectural design is done so 
that the direction and structure of the system produced is clear 
enough to direct the software development process. This approach can 
still give useful products very early in the development timescale . 
An example of this type of approach is the specification of the 
structure and interfaces for a database, with detailed facilities to be 
specified later. 

A similar method recently described by Hill [7] as a hybrid 
between "conservative" and "radical" top-down approaches has been 
found to work successfully. See also Redmill [8] and Krzanik [9]. 

Phased Development 

Figure 8. Phased Development 



www.manaraa.com

169 

Phased development has frequently been used in the 
development of large systems, and is a step in the right direction. 
The difference between a very small phase and a large increment is 
not distinct. However, phases tend to be large and growing; there is 
a tendency to put as much as possible into the current phase . There 
is also a temptation to compensate for timescale slippage by bringing 
forward the later phases to overlap the earlier ones . This approach 
can result in severe incompatibility between successive phase 
products. The emphasis with incremental development is to include 
as little as possible, i. e. as little as would be useful into each 
increment. 

Prototyping 
Proto typing is usually regarded as the building of a small system 

(or two) before building the big one. The knowledge gained in either 
building or using the prototype is then used in building the "real" 
system. A good description of the prototyping approach, combined 
with risk analysis, is given by Boehm [10] . 

"Rapid prototyping" is used to describe the building of systems 
using software tools such as code generators, report generators, or 
Fourth Generation Languages (4GL's). A recent book called 
"Structured Rapid Prototyping" by Connell and Shafer [11] gives 
guidance in the development of systems incrementally . 

Prototypes are used to reduce risk in the applications area (a 
novel design, function or performance), or to reduce risk in the user 
interface area . (The users should then recognise the final system as 
what they had approved as a prototype.) 

However, in a long development timescale, with several years 
between deliveries of prototypes, the requirements may change 
extensively, so that it is difficult to relate new requirements to the 
old prototypes. New hardware capacity, newer user interface styles 
and graphical capabilities seen on personal computers can make a 
prototyped user interface seem very old-fashioned. 



www.manaraa.com

170 

It is not always possible to predict in advance of development 
whether a prototype will be thrown away, incorporated or built 
upon. Prototypes are classified in terms of their use into 
experimental, exploratory, or evolutionary prototypes. (Floyd [12]) 
Prototypes can also be classified in terms of their relationship to the 
life cycle as Throw-Away, Incorporated, or Incremental, . Once and 
Hekmatpour [13]). 

Throw-Away Prototype 

Figure 9. Throw-Away Prototype 

If the prototype is written with the intention of throwing it 
away, then it is unlikely (and unnecessary) for it to be developed to 
the same standards as a "real" development . This type of prototyping 
is sometimes called 10 quick and dirty". The prototype can be 
discarded as soon as development of the large system begins (the first 
bin in the diagram), or it can be kept and possibly used by the 
customer until the large system is actually delivered and finished (the 
second bin). There is a tendency for users to become fond of a well
used prototype and be reluctant to throw it away. 



www.manaraa.com

171 

A throw-away prototype can be used as an animated 
requirements specification; if the prototype looks and interacts in a 
way which is liked and approved by the customer, then the final 
system can be tested to ensure that it looks and behaves in the same 
way. 

Incorporated Prototype 

Figure 10. Incorporated Prototype 

Part or all of the prototype can be incorporated into the final 
system software product, either code, design, or requirements . If a 
prototype has any possibility of becoming incorporated, the software 
engineering discipline and standards applied to its development should 
be consistent with the desired quality of the final product . 

Incremental Prototype 
An incremental prototype is the development of the system in a 

series of prototypes which are integrated together to become the final 
system. This therefore looks the same as the Evolutionary approach 
shown in Figure 6, but possibly without incremental delivery or the 
higher level of overall objectives, open architecture and planning of 
Gilb's approach . 



www.manaraa.com

172 

Tool-intensive Incremental Development 

Figure 11 . Tool- Intensive Incremental Development 

Software development tools are becoming capable of automating 
"higher up· the life cycle, i. e. code can now be generated directly 
from detailed design specifications. At the same time, requirements 
are being specified in increasingly more formal notations . 

These two trends give the possibility of eventually automating 
the entire life cycle. Semi-formal specification methods such as 
SSADM, Jackson, Your don and others may eventually be automated . 
Mathematically based formal methods such as VDM, Z, and OBJ are 
rigourous enough to automate now. There is already a commercial 
tool (ObjEx) [14] which automates specifications written in OBJ. 

Although current approaches suffer from severe performance 
limitations, future hardware and software development will continue 
to ameliorate performance problems. Ultimately we are left with only 
two phases: specifying requirements and testing. If this happens, it 
would not be sensible to specify all requirements before getting 
something working, and software development will naturally follow an 
incremental cycle. 



www.manaraa.com

173 

INCREMENTAL DEVELOPMENT RESEARCH 

There is a large body of research in the area of incremental 
development as described in Graham [1] for a comprehensive 
overview, Gilb [6] for historical development and general inspiration, 
Ince and Hekmatpour [13] on prototyping, Agresti [15] for discussion 
of new paradigms, and Law and Longworth [16] for strategic 
consider a tions. 

Guidance for implementing incremental development and 
delivery can be found in Deutsch [4] for incremental build and test, 
Gilb [6] for evolutionary delivery, Connell & Shafer [11] for tool
intensive (4GL) development . An interactive incremental 
development methodology called "STEPS" (Software Technology for 
Evolutionary Participative System Development) is given in Floyd, 
Reisen and Schmidt [2] . Michael Jackson has recently launched an 
incremental development methodology called "ISE" (Incremental 
Software Engineering) [17]. 

Reported experience in the use of incremental development is 
scarce. The design of a prototype for a large system is described in 
Harker [18] . Other references have been given in Graham [1] . 

It is interesting to note three instances of successful use in other 
papers included in this publication: Warboys [19] on the success of 
CADES, Chatters [20] on the fault-free factory approach, and 
Malcolm [21] on the first on-time delivery in ten years, albeit in a 
project which was probably already doomed (due to the loss of user 
confidence) . Willmott [22] also felt that incremental re-development 
of an air traffic control system would be safer than one-time 
replacement. 

The successful IBM "Cleanroom" approach [23], described at an 
earlier CSR conference, is also an incremental approach . 



www.manaraa.com

174 

INCREMENTAL STRATEGY 

Suitability 
Large systems are particularly suitable for incremental 

development. Monolithic development is suitable only for small 
systems of short duration, where the requirements are well known at 
the beginning of development and unlikely to change, according to 
Krzanik [9] , and for commercial packages such as a database 
package, operating system, or word processor, according to Connell 
and Shafer [11] . Gilb maintains that any system can be developed 
using evolutionary delivery. [6] 

Deciding which form of incremental development to use should 
be based on the risk factors for the particular system to be 
developed. If the system requirements are very uncertain and highly 
likely to change, then prototyping may be suitable. If the system 
architecture is critical, e.g . a database, then the framework model 
may be suitable . If development funding is uncertain, then 
evolutionary delivery may be most suitable . Incremental 
development is quite feasible for fixed-price contracts, but may well 
be easier without incremental delivery. 

Partitioning the System into Increments 
Deciding how the system can be divided up into self-contained 

functional increments, particularly for incremental delivery to users, 
can be difficult when incremental techniques are initially tried . 
(Deciding how best to partition a system for development is never 
easy anyway.) There are a number of good design methodologies for 
producing a loosely coupled architecture of non-overlapping functions 
(which is good design practice in any case); incremental development 
does not require any particular or specific design technique. The 
involvement of outside consultants with knowledge and experience of 
incremental development can be very helpful in the initial stages. 



www.manaraa.com

175 

The initial difficulties experienced in designing increments are 
often due to thinking about the system in ways which are quite 
different to the monolithic approach. Monolithic thinking is directed 
toward completing all requirements first, but incremental thinking 
takes a small requirement subset toward implementation first . 

The objectives which drive the partitioning process are to keep 
the increments as small as possible, provided they will provide a 
useful function to the users . The temptation to continually increase 
the functionality within each increment should be resisted. It is also 
essential to retain control over the content of each increment, and 
prevent developers from incorporating other "good changes at the 
same time", which then becomes undisciplined and uncontrolled . 

Prioritising and Scheduling 
The scheduling and sequencing of development is based on three 

aspects: first, any parts of the system which must be in place before 
functional increments can be implemented should be completed first, 
but only the minimum needed . 

Second, the broad strategy for the next series of increments 
should be defined. Alternatives include the development of the most 
critical increments first to minimise risk, the development of 
interface increments first to test control, or the development of 
functional threads first to achieve a working partial product . The 
latter is needed as early as possible in order to use incremental 
delivery effectively. 

Within the broad strategy, there will be a choice of increments 
among equal priority. The third scheduling aspect is based on a ratio 
of two things : the user benefits and the development cost . The user 
benefits for the selection of proposed increments should be analysed 
and prioritised by the user organisation, if that is feasible. The 
development costings should be estimated by the developer 
organisation. 



www.manaraa.com

176 

This ratio of benefit over cost determines the scheduling 
priority . This is technically called "the juiciest bit" (Gilb, [6]) Thus 
an increment with a high perceived benefit with high cost may be 
developed before one for a low cost and low perceived benefit, but 
those with both high benefit and low cost will be earliest . 

The increments to be prioritised will not stay fixed for long, but 
need to be re-analysed in the context of recently delivered 
increments; error correction increments may take precedence over 
other planned increments, for example . 

PROBLEMS OF INCREMENTAL DEVELOPMENT AND DELIVERY 

In this section, various problems related to incremental 
development and delivery are outlined . Possible solutions are 
suggested where appropriate . Further discussion, particularly of 
management problems, can be found in Redmill [8]. 

There are many aspects of software development which are not 
affected by incremental development or delivery, such as the need 
for good management, quality assurance, configuration management, 
and the training of staff in software engineering principles. Additional 
training is needed, however, when departing from development 
techniques which are widely accepted, even when extensive benefits 
can be gained. 



www.manaraa.com

177 

Hardware Related Problems 
Risk of inadequate choice: The choice of hardware for a system 

to be developed incrementally will be based on intentionally 
incomplete specifications, with the risk that an inadequate choice will 
be made. In fact monolithically developed systems often make the 
wrong choice of hardware as well, but the risk is increased in 
incremental development. A hardware upgrade may be a possible 
solution. 

Response times: If a small number of increments have been 
delivered on the target hardware, response times should be extremely 
good at first, but will gradually deteriorate with increasing 
functionality, to the disappointment and frustration of users. To 
overcome this, it is possible to "simulate the final user environment", 
i. e. put in slowing-down code to be removed during system tuning. 
If response times are severely affected by a single increment, this can 
be an aid to identifying system bottlenecks, which can be difficult to 
localise with a slow system which has been developed monolithically. 

Development hardware: If the target hardware is delivered with 
the early increments, additional hardware may be needed to continue 
the development of the system . This problem is normally postponed 
until the maintenance phase of monolithic development, but needs to 
be faced earlier in incremental delivery. 

Embedded systems hardware: The parallel development of 
hardware for embedded systems may constrain the definition of the 
increments. 

Life Cycle Problems 
Incremental development is not an alternative to applying life 

cycle discipline; the phases of the life cycle still need to be followed in 
the right order and with all of the associated controls. Each 
increment is a small life cycle in its own right. 



www.manaraa.com

178 

Requirements specification : Requirements still need to be 
specified for the limited area which comprises an increment, and 
need to be frozen while the increment is developed (icecubes instead 
of icebergs). This enables planning, estimation and scheduling to be 
done in the small. The Requirements Specification is needed to define 
the boundaries of the system and of the increment. 

Desilln: Design is needed in order to preserve a coherent 
structure to the software system throughout the changes which will 
occur during incremental development. The overall design should be 
defined in the first increment, but each increment should also be 
designed, and the design must work towards preserving the integrity 
of the overall architecture . This requires effort, as Lehman and 
Belady point out in their second law of program evolution [24] . The 
difficulty of providing a good overall design without a full definition of 
requirements should not be underestimated. 

Testina: Testing is needed to ensure that each increment fulfils 
its requirement, and has not adversely affected the rest of the 
system. With incremental delivery, more extensive regression testing 
will probably be needed, since any change to the system results in a 
changed system. All tests should be run again to ensure that there 
are no adverse side-effects of the change. 

There are additional considerations for a system which is tested 
extensively using a purpose-built simulator or test harness. If the 
production software is developed incrementally, the test software 
needs to be ready for use early in the development timescale, and so 
may also need to be developed incrementally. This will have an effect 
on the scheduling of effort between the software product and the test 
software. Note that the test software needs to be tested as well, 
before it can be relied upon to test the production software. 

Redmill has found that there is a tendency for users to perform 
thorough acceptance testing only for the first increment with the 
testing of subsequent increments being skimped . [8] 



www.manaraa.com

179 

Other life cycle products: Documentation, user manuals, 
training, and quality control procedures should not be skimped in the 
excitement of having something working. They are still needed in 
order to retain control over the development process. A good 
configuration management system is essential for keeping track of 
increments in various stages of completion. Although working code 
may be produced quickly, the extra documentation required for 
additional releases may be seen as a greater overhead than with 
monolithic development . 

Management Problems 
Livini with uncertainty: It is unsettling to live with 

uncertainty; this is one reason why developers prefer to specify 
complete requirements before beginning to design a system. 
However, incremental development requires a certain level of 
uncertainty to be tolerated within the context of controlled 
development. There are levels of uncertainty with monolithic 
development as well, but we tend to hide them from ourselves by 
attempting to resolve specification uncertainties on paper . 

Team coordination: The coordination of teams of people working 
on different parts of the system, and being in different life cycle 
phases at once, presents a challenge to management. Corrections 
found in the use of a delivered increment have to be incorporated 
into the system as part of an increment further "down-stream" . 
Configuration management is essential. 

System releases: Releasing a system to a large user base 
incrementally is even more of a challenge, and may prove very 
difficult even with a good configuration management system. 

Schedulini and prioritisins: The scheduling and prioritising of 
increments is a process which is constantly being altered by the 
results of earlier incremental deliveries; management must be 
prepared to spend effort in supporting this continuing process . 



www.manaraa.com

180 

Balance between original specification and desired cbanies: 
Development may tend to proceed in two directions at once; pulled 
toward the original specification by the developers (who can easily 
become "locked in" to local goals), and pushed toward new changes by 
the users. Management needs to keep the balance between these 
two. The requests for change should not be allowed to "hijack" the 
original system objectives, but some change must be allowed or the 
benefit of incremental delivery will be lost. Changes need to be 
controlled at a strategic level, in order to take the widest view of the 
system objectives into account . 

Onanisational cultural change: Changing the way a large 
organisation develops software is not easy and cannot be done 
overnight . Effort is needed in introducing incremental development 
ideas, to assess and then convince of the benefits . Effort is also 
needed to ensure that the concepts are being implemented correctly; 
for example, the temptation to merge increments together in order to 
meet a timescale should be resisted . Without continuing pressure, 
attitudes and habits will revert to the earlier ideas, even if the new 
words are used. 

The development organisation may find strong resistance even 
from those departments which stand to gain from incremental 
development or delivery, for example contracts, quality assurance, 
and higher management. 

Financial/Contractual Problems 
Contracts : Contracts for the development of software systems 

are generally based on a statement of requirements, under the 
assumption that development will proceed monolithically. There is no 
reason why incremental development or even delivery cannot proceed 
from a "completed", i.e. frozen, Requirements Specification . 
However, many of the benefits of the incremental approach will be 
lost if user and developer knowledge were prohibited from being 
incorporated into the development process. 



www.manaraa.com

181 

To allow the format of the contract to determine the 
development strategy appears to be putting the cart before the 
horse; surely the contract should be the servant of development, not 
its master. However, a new contractual approach may also involve 
significant organisational culture changes . 

Competitive tendering: Competitive tenders using an incremental 
approach as opposed to a fully specified requirement may not enable 
the purchaser to evaluate like with like. The unspoken basis for pre
specifying the full requirement is the assumption that the 
requirements can be fully known in advance, which is rarely 
completely true . 

A working prototype may be more convincing to a potential 
customer than a 250-page document, however . 

Estimation: Estimation of system development effort is even 
more difficult when you don't know what you are going to build. 
Estimation methods and tools are the wrong way around for 
incremental development; they tell how long for a known (guessed) 
size, whereas an incremental estimate wants to know what 
functionality (size) can be achieved with known effort. 

Manaiement accountability: Accountability to 
management may be distorted by incremental development. 
will be spent on the original specification, corrections and 
requests . If management are tracking only effort on the 

higher 
Effort 

change 
original 

specifications, they may not have a true picture of the system being 
produced. On the other hand, incremental development may be the 
means of forcing out into the open what is really happening, which 
can be hidden in monolithic development. 

De-stabilised development environment: If a developer is funded 
for only a small number of increments rather than for a full 
development, this may lead to a de-stabilised development 
environment, i. e. insufficient commitment to the project from the 
developer because of the uncertain future of the project. This may 



www.manaraa.com

182 

produce an inadequate product, a new search for a more suitable 
developer, with delays and additional expense. However, it is 
preferable for the purchaser to discover the limitations of the supplier 
after only a few increments than after a lengthy monolithic 
developmen t. 

If a contract is awarded before a full specification is produced, 
the buyer may become "locked in" to an unsuitable supplier. It may 
well be cost-effective to fund more than one developer to produce an 
early increment, particularly for a large system. 

User-Developer Relationship Problems 
User expectations: Users need to be involved in the process of 

setting goals and requirements for each increment, and need a 
thorough understanding of what is to be achieved by each one; their 
expectations can become somewhat inflated if they are not kept in 
touch with realistic proposals . User perceptions of what is easy and 
difficult to achieve are notoriously inaccurate . 

ADVANTAGES OF INCREMENTAL DEVELOPMENT 

The advantages of incremental development are given separately 
to those of incremental delivery. Incremental development without 
delivery gives advantages to the developers, and incremental delivery 
gives advantages to the users . 

Improved Team Morale 
Success breeds success; if the team can see the end product 

actually working, it is a great boost to morale and can lead to 
greater productivity . 



www.manaraa.com

183 

Early Solution of Implementation Problems 
Problems which are discovered during implementation can be 

put right before the rest of the system is built according to the same 
(faulty) assumptions . Testing the software early in development 
leads to improved quality of the finished product. 

Reduced Risk of Disaster 
If you are going to have a disaster, it is much cheaper to have 

an incremental one; you will have lost only thousands or tens of 
thousands rather than millions. 

Improved Maintenance 
The maintenance of incrementally developed systems is easier 

than monolithically developed systems because a maintenance 
environment is started early on in development. Good maintenance 
is continuous controlled change, and so is incremental development. 
Increments which are not designed to be easy to change will not 
survive the incremental development process. 

Control of Over-engineering or Gold-plating 
If best-value increments are developed first, that leaves the 

worst-value increments until last, where their true cost can be seen. 
Additions to specifications are often agreed for political reasons at the 
beginning of a project ; if the benefits to end users drive the 
production schedule, the political enhancements may well be quietly 
forgotten . 

Measurement of Productivity 
In monolithic development, productivity is measured in terms of 

lines of code produced per day, or pages of documentation. If parts 
of the system are working, "product"-ivity can be measured in terms 
of the actual product. 



www.manaraa.com

184 

Estimation Feedback 
Estimates are produced in the large, for the whole system, but 

also in the small for the increments. If the first increment's actual 
effort is out by a factor of two, for example, it is possible that the 
global estimates are also out by the same factor . In monolithic 
development for a project taking say 6 years, you may not find out 
how inaccurate your estimates are until 4 years have elapsed; with 
incremental development you will find out much earlier, say after 2 
months. 

The feedback from incremental estimation can either modify or 
confirm both the global estimates and the estimates for subsequent 
increments. Either way management has better information sooner 
than with monolithic development. 

Smoother Staffing Requirements 
With monolithic development, the project will need teams of 

analysts, followed by teams of designers, coders, and testers in 
sequence. With incremental development the need for specialised 
teams is distributed throughout the development process. 

ADVANTAGES OF INCREMENTAL DELIVERY 

The benefits of incremental development for developers are 
significant, but the greatest benefits come from both incremental 
development and delivery to users. 

Useful Product Early 
Seeing something working which will actually benefit their needs 

is the greatest reward for users. Users may well be worried about 
their decision to invest in a software system and may remember 
hearing tales of disaster in related areas. Having something which can 
bring business or operational benefits early in the development process 
gives them the beginning of a return on their investment without 
having to wait years for anything tangible. 



www.manaraa.com

185 

Increased Confidence in Developer 
The users' confidence in their developer is greatly enhanced by 

having something working early; actually this applies whether the 
increment is delivered or not . An improved working relationship 
results from better morale. 

Better Quality Software 
The software which is produced benefits from the developers' 

increasing knowledge being "folded" back into the developing product . 

Longer Useful Life 
The system will have a longer useful life, because it will be easy 

to maintain, having been subject to a great deal of controlled change 
throughout development . Products which can evolve easily to satisfy 
changing business needs last longer and are more cost-effective than 
those which are so difficult to change that they are abandoned and 
replaced . 

More Flexible Options 
If a project does suffer from cost or time overruns, some later 

increments can be eliminated, and the most useful parts of the 
system will still be produced within the original financial constraints. 

Something Useful if Cancelled 
If a monolithic project is cancelled, the only things produced are 

piles of paper (requirements, design documents, etc. ) . If an 
incremental project is cancelled, the increments already produced 
form a working product of some sort. 



www.manaraa.com

186 

Increased User Acceptance 
If users actually have some say in the way the system is 

developed, their sense of "ownership" is improved, which leads to 
better acceptance of the system by the user organisation. 

Increased System Assimilation 
The assimilation of a major new system into working practices 

can be traumatic for the user organisation . People are resistant to 
change, but they resist large changes more than small ones . Most 
problems of system use stem from people problems rather than 
technical ones. Incremental delivery allows small areas of the 
organisational procedures to be altered at anyone time; when the 
problems are overcome, those areas are then established, so the 
system has a foothold in the organisation. This also increases the 
sense of system ·ownership". 

Increased Understandinl of Requirements 
Incremental delivery gives the users something real. Their first 

reaction is "this is not what I want", but now they have a much 
better idea of what they do want, and can progress toward their 
true requirements. 

System can Meet Real Need, not Frozen Need 
The increasing user knowledge gained during development can be 

"folded" back into the development process, so that the eventual 
system is much closer to what is really needed at the end, rather 
than what was thought to be wanted at the beginning. 



www.manaraa.com

187 

SUMMARY OF EFFECTS 

A summary of the effects of incremental development and 
delivery is shown in Figure 12 below. 

user 
know
ledge 

1 frozen 1-..... --spec 
Incremental Development B 

• 
developer knowledge 

Figure 12. Effect of incremental development and delivery. 

Incremental development moves the final product from the 
initial specification, System A, towards System B, what the developer 
would have produced with hindsight. 

Incremental delivery cannot occur without incremental 
development, so it is not possible to move from System A to C. 

Incremental development and delivery moves the final product 
from System A towards System D, the system which is wanted at 
the end of development. 

Monolithic development confines the system to System A, the 
frozen specification. Neither user nor developer knowledge can be 

incorporated into the software system product. 



www.manaraa.com

188 

COMPARATIVE COSTS 

The comparative costs of monolithic and incremental 
development for a hypothetical project are shown in Figure 13 below . 

loriginol Spec 

I COrrections I 
II nev1tob Ie Chonge 

Requirements 
evolution 

Configurotion 
Management 

.. uno 

tncr 

.. uno 
tncr 

.. uno 
tnor 

.ono 
tncr 

~ .. ~ .,.... .. .. .. .. .. .. .. .. ..... .. .. .. .. .. .. _ . .. . . . - - - _ .. _ .. - - --
II"""~ ____ 

rlllll"/~_ 

"""""""'IIII"/~ -

""""",,~ -
lIono 
tnor 

:, : ,:.:.:.:.:.:,:.:,:, -
·'11111111111111111111. 

Figure 13 . Comparative Costs of Monolithic and Incremental 
Development 

Original Specification 
With monolithic development, the cost of developing the original 

specification must be met in full in order for the project to produce 
anything useful. With incremental development, it is possible that 
the original specification would still be produced, but is more likely 
that only part of the original specification will be produced . 



www.manaraa.com

189 

Corrections 
The cost of corrections is no more, and should be less, for 

incremental development than for monolithic, since errors of analysis, 
design or implementation will be discovered earlier in development 
and will not have propagated through the rest of the system 
requirements, designs and code. 

Inevitable Change 
It will not be any more costly to respond to inevitable change, 

such as a changed hardware environment or new work practices. It 
should in fact be less costly for incremental development, since a 
system which has been developed incrementally is accustomed to 
frequent change . 

Requirements Evolution 
It will not be any more costly to implement evolving 

requirements, and in fact should be less in incremental development, 
since many changed requirements can be incorporated into the final 
system without having to discard work already done on superseded 
requiremen ts. 

Confilluration Manallement 
Configuration management costs are likely to be higher with 

incremental development than with monolithic development, 
particularly if the existing configuration mangement method and/or 
tools are fairly primitive. Configuration management is more 
essential for incremental development and delivery. although it is a 
good idea for any software development . 



www.manaraa.com

190 

COMPARATIVE SCHEDULING 

The comparison of scheduling differences between monolithic and 
incremental development is shown in Figure 14 below. 

Timescale 
to ftnlsh 

Timescale 
to produce 

useful function 

Requirements 
evolutton 

.... 
IltCr """""""""",~ 

1M .. 

ller IZI 

Figure 14. Comparative Scheduling for Monolithic and Incremental 
Development 

Timescale to Finish 
The elapsed time to finish the total development may be lor.ger 

for incremental development than for monolithic development, but it 
is not as critical. 

Timescale to Produce Useful Function 
The timescale until something useful is produced is much shorter 

with incremental development and delivery; this is the main reason 
for using incremental models . This is also why it is not as critical if 
the elapsed time to finish the total system is greater than with 
monolithic development. 



www.manaraa.com

191 

Requirements Evolution 
Real requirements do evolve, whether the developers take note 

of the changes or not . In monolithic development, only a limited 
number of requirement changes are permitted; the remaining changes 
are therefore stacked up waiting until after handover to be 
implemented. In incremental development, the evolving 
requirements can be incorporated into the evolving product . 

After handover, the incrementally developed system merely 
continues to adjust to changing requirements in much the same way 
as it did during development, but probably at a reduced rate (fewer 
new facilities being included) . 

The monolithic system has two problems after handover . First, 
it must become a maintenance-type environment capable of handling 
changes in a controlled way, which may involve some "teething" 
troubles. Second, it must deal with the backlog of changed 
requirements which have been stacked up and prohibited during 
development, in addition to coping with the on-going requests for 
changes. 

SUMMARY AND CONCLUSIONS 

This paper has given definitions of incremental development and 
delivery, and emphasized that an increment should be a complete 
self-contained functional unit of software, including all life cycle 
documentation, test documentation, and other support such as user 
manuals and training . 

Essentially the incremental idea for large system development is 
to develop a series of small systems, which will eventually become 
the large system. The main strategy is to postpone some detail in 
order to get something working as soon as possible. A vertical • slice " 
of the life cycle model is taken, rather than a horizontal "slab" at 
once. 



www.manaraa.com

192 

Incremental development can reduce many of the risks of large 
system development, but it is not without problems. The problems 
of incremental development centre around the management and 
control of software and associated products in a different time 
ordering to monolithic development. 

In order to "think incremental", there are three guidelines : 
- Think Small (ask not how much can be done, but how 
little can be done to provide a working partial product) 

- Think Useful (the benefit to the end users is the 
primary driving force behind incremental development and 
delivery) 

- Think Complete (an increment is a mini-life-cycle in its 
own right). 

As software developers begin "taking their own medicine" by 
adopting software tools, I have predicted [1] that incrementally 
developed tools will be more successful than monolithically developed 
tools; this is already supported in the experiences of implementing 
IPSE's as reported by LeQuesne [25]. 

Barry Boehm once said that developing software from 
requirements is like walking on water; it's easier if it's frozen . 
However, it is easier to freeze a pond than an ocean. 

Software is the most flexible, malleable and adaptible medium 
ever known; isn't it strange that the first thing we do with a 
software requirement is to freeze it? Incremental development and 
delivery can help to put the "soft" back into software. 



www.manaraa.com

193 

REFERENCES 

1. Graham, D. R. , "Incremental development : review of 
non monolithic life-cycle development models", Information and 
Software Technology, 1989, 31(1), 7-20. 

2. Floyd, C. , Reisen, F.-M . , and Schmidt, G. , STEPS to Software 
Development with Users . In Lecture Notes in Computer Science. 
Vol 387 : ESEC '89, ed. C. Ghezzi and J . A. McDermid, 
Springer-Verlag, 1989, pp . 48-64 . 

3. Hirschheim, R. & Newman, M., Information Systems and User 
Resistance: Theory and Practice, The Computer Journal, 1988, 
31(5) , 398-408 . 

4 . Deutsch, M. S., Software Verification and Validation: Realistic 
project Approaches, Prentice-Hall, Hemel Hempstead, 1982 . 

5 . Wong, C. , A Successful Software Development, IEEE 
Transactions in Software Engineering, 1984, SE-10(6) ,714-727. 

6. Gilb, T. , principles of Software Engineering Management, 
Addison-Wesley, Wokingham, 1988 . 

7. Hill, G., Radical and Conservative Top-down Development, 
Software Engineering Notes, 1989, 14(2), 32- 38. 

8. Redmill, F. , Computer System Development : Problems 
Experienced in the Use of Incremental Delivery, to be presented 
at SAFECOMP '89, 5-7 Dec, 1989, Vienna, Austria . 

9. Krzanik, L. , Anomalies with evolutionary innovation project 
control strategies . 
Management, ed . 
Amsterdam, 1986. 

In The art 
H. Hubner, 

and Science of Innovation 
Elsevier Science Publishers, 



www.manaraa.com

194 

10. Boehm, B. W., A Spiral Model of Software Development and 
Enhancement, ACM SiaSoft Software Enaineerina Notes, 1986, 
11(4), 14-24. 

11. Connell, J. L. , and Shafer, L. B. , Structured Rapid 
prototyping. An Evolutionary Approach to Software 
DeyelQpment, Yourdon Press Computing Series, Prentice-Hall, 
Englewood Cliffs, 1989. 

12. Floyd, C. , A Systematic Look at Prototyping. In Approaches to 
prototyping. ed. R. Budde, K. Kuhlenkamp, L. Mathiassen, H. 
Zullighoven, Springer-Verlag, 1984, pp. 1-17. 

13. Ince, D. , and Hekmatpour, S., Rapid Software Prototyping, 
Technical Report 86/4, Open University, 1986. 

14. Gerrard, C., ObjEx, Gerrard Software, Macclesfield, 1988 . 

15. Agresti, W. W., New paradigms for Software Development, 
IEEE Computer Society Press, 1986. 

16. Law, D., and Longworth, G. , Systems Development; Strategies 
and Technigues, The National Computing Centre. Manchester, 
1987. 

17 . Jackson, M., Jackson Information Update : Conference 1989, 
30-31 October, Eastbourne, Computing, 19 Oct 1989, p. 52. 

18. Harker, S., The Use of Prototyping and Simulation in the 
Development of Large-Scale Applications, The Computer Journal, 
1988, 31(5), 420-425. 

19. Warboys, B. , Reflections on a Large Software Development 
Project. In GSR: Sixth Annual Conference on Large Software 
Systems, ed . B. Kitchenham, 1989 . 



www.manaraa.com

195 

20 . Chatters, B. , Software Reliability Improvement - The Fault 
Free Factory (A Case StUdy). In CSR: Sixth Annual Conference 
on Lane Software Systems, ed. B. Kitchenham, 1989. 

21. Malcolm, B., A Large Embedded System Project Case Study. 
In CSR: Sixth Annual Conference on Larie Software Systems, 
ed. B. Kitchenham, 1989. 

22 . Willmott, S., Design of a Flight and Radar Data Processing 
System for the Support of Air Traffic Control . In CSR: Sixth 
Annual Conference on Larie Software Systems, ed. B. 
Kitchenham, 1989. 

23. Dyer, M. , A Formal Approach to Software Error Removal, ~ 
Journal of Systems and Software, 1987, 7, pp . 109-114. 

24 . Lehman, M. M. and Belady, L. A., prQiram Evolution: 
processes of Software Chanie, Academic Press Inc. (London) 
Ltd . , 1985 . 

25 . LeQuesne, Individual and Organisational Factors and the Design 
of IPSE's, The Computer Journal, 1988, 31 (5), 391-397 . 



www.manaraa.com

8 
Independence in Verification and Validation 

RICHARD N HALL 
Software Project Manager 

GEC Avionics Ltd 
Airport Works, Rochester, Kent MEl 2XX, UK 

Abstract 

Large software systems are very complex and their development may involve hundreds of man 
years of skilled effort with correspondingly large budgets. Add to this the rigorous constraints 
applied by a real time and safety critical applications and this makes for an extremely 
challenging verification and validation task throughout the software lifecycle. The software 
proportion of system costs has increased dramatically over the last decade. Good verification 
and validation has a crucial part to play in ensuring software project success. 

This paper discusses the concept of independence in the software verification and validation 
task and in more detail presents experiences in setting up an independent software verification 
group covering several large projects within GEC Avionics. As discussed below the inclusion 
of independent V & V methods can provide increased productivity and reliability during 
software development. 

Software will always contain errors. V & V must be about how efficient we can be in pulling 
out the errors. The right attitude to V & V is important. Case tools and formal methods will not 
solve all of the problems of developing software for large systems. V & V is here to stay and 
independence can help! 

Introduction 

In order to place my experience in the area of software verification, validation and testing in 
context, an overview of the systems development environment in which I have worked follows: 

GEC Avionics 

GEC Avionics is one of the GEC-Marconi group of companies. Head office for GEC Avionics 
is in Rochester, Kent. Other sites are at Nailsea, Welwyn Garden City, and offices world 
wide. 

196 



www.manaraa.com

197 

Products 

Our product area which mainly consists of civil and military aviation systems, also includes 
systems for land vehicles, ships, submarines and subsea energy production. 

Achievements 

World wide sales are made to over 70 countries and GEC Avionics has won 14 Queen's 
Awards to Industry for export and technology produced. For example, we have provided 
systems for; 

o Automatic Flight Control and Blind Landing System for Concorde, 

o Head Up Displays (HUDs) for all General Dynamics F-16 aircraft, 

o Flight Control System for Tornado and UK Experimental Aircraft Programme (EAP), 

o Slats and Flaps Control System for Airbus. 

o Standard Central Air Data Computers for 37 types of USN/USAF aircraft, and 

o ASW systems in fixed and rotary wing aircraft - for RAF/RN and export. 

Experience 

There is a capability in the company covering all facets of research, design, development, 
production management and support for electronic systems. 

Systems frequently include multiple processors and large amounts of software. 

For example, one recent Tactical and Acoustic system had 19 processors, and approximately 
1.3 Mwords of flight software in ROM. 

~~V 
Advanced Software Engineering T askforce 

Due to the increased importance of software activities as a proportion of projects' activity the 
Advanced Software Engineering Taskforce (ASET) was set up to encourage internal company 
dialogue on software engineering with the aim of identifying and promoting good software 
engineering practice, methods and tools. 

ASET funds evaluations of new tools and methods. Reports and seminars spread this 
information throughout GEC Avionics and other GEC Marconi Companies. It is against this 
back drop that my experience of software V & V was gained. 



www.manaraa.com

198 

Verification and Validation 

What is V&V? 

In order to clarify any discussion about V & V it is necessary to define the tenns verification, 
validation and testing. Almost everyone has their own ideas about this but throughout this paper 
I shall assume the following definitions, which I believe are most useful: 

Verification is about checking that all intentions of the previous phase are embodied in the next 
phase; e.g. Intentions of a detailed design are completely covered in the code. Another way of 
looking at this is that we have a blue print and we are concerned with accurately reflecting its 
content in each phase of development Verification may be static or dynamic. 

Testing is dynamic verification. Testing is searching for errors by multiple execution of code 
with results compared against some previously determined expected results. For an example of 
other definitions see MYERS (2). 

Validation 

Validation is about checking that software is fit for purpose. This is more narrowly defined as 
checking a lifecycle phase output against the customer requirements (usually a specification). 
Using the blueprint analogy with validation we are asking the question "Does the blueprint 
show what the customer wants?" 

The Software Lifecycle 

LIFECYCLE 

H/W 
Requirements 

~ System 
System ~ Integration 
partition, / 

SIW Requirements SIW 'lease 
Testing" / 

Preliminary Design SIW In.(gratiOn & 

" Jesting 
Detailed Unit 
DeSign" T/ng 

Code & Static Analysis 

Figure 1. Typical Software Lifecycle 

V & V activities must span the entire software engineering lifecycle. A typical example of the 
'V' (shaped) lifecycle is shown in Figure 1 above. The 'V' lifecycle is a great improvement on 
the old waterfall model of software development as far as V & V is concerned. This is because 



www.manaraa.com

199 

it shows with great clarity that when code is available, the job is only half done and much hard 
work remains in the various testing and debugging phases to push the software project up the 
right hand side of the 'V'. The 'V' lifecycle also forces the recognition of levels of testing e.g. 
unit, unit integration and software subsystem testing. These levels are closely related to the 
levels of requirement and design decomposition. 

Finding errors 

The value of rmding the inevitable errors in software is clear if one considers the cost benefit of 
increasing the quality of (or confidence in) of a piece of software. So finding errors gets us 
nearer towards our goal of delivering software or systems containing software to a required 
standard. 

Having dermed testing as multiple execution of code with the aim of finding errors, let us look 
at why we should also aim to catch them as early as possible in the lifecycle. 

Finding errors early 

The payoff for rmding errors early (e.g. in the design rather than the testing phase) is a 
reduction in cost to develop a system to a particular quality standard. See Figure 2 . 

Cost to 

fix 

errors 

by 

phase 

FINDING ERRORS 

• Errors cheaper to fix if found earlier 
• Not much hard evidence but 
• Intuitively correct 

Requirements Design Code & Test System 
Integration 

Operation 

Figure 2. Finding Errors - Relative Cost versus Lifecycle Phase 

This belief, which I also hold, is difficult to prove but must intuitively be true. Consider the 
case of an error discovered at a preliminary design phase which needs around a man day to 
correct all the relevant document sections. The same error if overlooked until the system reached 
service would have rippled through preliminary and detailed designs, code, and passed various 
testing phases, which unfortunately missed it, to reach a customer. 

The cost here must be considered as the effort required to correct the design and code and to add 
appropriate tests to test documents and then to re-run old regression tests plus new tests, to 



www.manaraa.com

200 

check the correction before re- releasing the system, and retrofit new software in EPROMs to 
systems in customer use. Clearly more than half a man day cost! Belief comes in to the 
argument when we are asked to interpolate between these two extremes and accept that the 
sooner an error is trapped, the less will be the knock on effects, thus the cheaper it will be to 
fix. For further comment on this topic see HENNELL (7). 

Techniques for Verification 

Static verification may be done with or without the use of software tools. Any document may 
benefit from a review e.g. requirements, design or code reviews. Often the terms review, walk
through or inspection are used as interchangeable. However, I prefer to use "review" as a 
generic term covering any meeting with the purpose of checking the output of a software 
lifecycle phase. Walk-throughs are effectively the human execution of test cases with a peer 
group present to spot errors. An inspection aims to collect errors from a review team in the most 
efficient way without necessarily walking through test cases, MYERS (3). 

Static code analysis by tools such as SPADE, MALPAS and LDRA Testbed allows the 
automation of checking for inconsistencies and the use of programming standards. This usually 
would not replace the other review techniques but would be in addition to them where deemed 
necessary. 

Dynamic verification (testing) must be accomplished with the help of tools to enable test stimuli 
to be applied to the software under test and to monitor the results. The environment used may 
be either simulated on a host computer (e.g. VAX) or on target (e.g. M68020) in a system 
context with test harnesses built around the software under test. 

Regression testing is the running of tests to verify that software changes have not adversely 
effected the original software. Software changes carry more risk than the production of original 
code. However, the regression testing of these changes is often done in a hUrry. Everyone gets 
bored with repetition so the only way around this problem is to automate testing wherever 
possible. This aids repeatability, an essential part of efficient, planned testing. Automation also 
helps to maintain investment in planned testing. 

Techniques for Validation 

If we take the earlier definition of validation as checking any lifecycle phase output against 
customer requirements, there are a number of ways of achieving this. 

By far the most efficient way is to do as much validation during the early part of the project as 
possible. This is to ensure that the software requirements accurately embody what the customer 
wants. 

Methods include requirements capture and animation, rapid prototyping, formal expression of 
specifications and reviews. All aim to assist in flushing out misunderstanding and ambiguities 
early in the software (and system) lifecycle. 

In an ideal world this would be enough, and we would then only need to verify that we were 
building the specified software accurately. In practice the successive refinement and 
decomposition of designs can cause divergence from the original customer requirement. The 
skill and experience of the staff producing systems and software is crucial in trapping this 
divergence and correcting it. This may be done either formally, in reviews, or informally 
through the curiosity of staff. In both cases, validation is taking place. Formal reviews are 
essential but won't find all the problems! 



www.manaraa.com

201 

ASET has created a Fonnal Methods panel and currently 8 studies in the following areas are 
being progressed including: 

• Requirement Animation Study 

• VDM v Yourdon comparison 

• Z study 

• The integration of formal and structured methods 

Independence 

Throughout this paper we have concentrated upon what is to be done and when it should occur 
in the lifecycle, without considering who should be perfonning V & V activities, BElZER (6). 
This is where the idea of independence in V & V must be considered. This concept in its must 
basic fonn simply says that V & V activities are performed more effectively when someone 
other than the software designer or programmer is involved. The degree to which that 
involvement happens is debatable but the concept is clearly considered useful by the MOD since 
the draft DEFSTAN 00-55 (9) mandates the use of independent V & V teams when developing 
safety critical software. This is still under discussion but it shows that "independence" in V & 
V is gaining favour. 

First let us consider the entrenched attitudes to V & V and the benefits to be gained from 
independence. 

Attitudes to testing 

"Testing is boring" 

'Testing is boring!' is one of the attitudes I have heard expressed. Traditionally programmers 
have disliked documentation most. Their second worst dislike must then have been testing, for 
it had (has?) a reputation for being repetitious, undemanding work. The grudgingly done unit 
testing simply seemed to delay the process of design, code and "getting the system working" by 
large amounts of intuition, head scratching and overtime. One difficulty with this attitude is that 
if it is hard to get a programmer to do testing thoroughly, it is almost impossible to encourage 
him to take the "King's shilling" in order to "press gang" him into being a full time tester! 

Though these attitudes may be difficult to remove, it is well worth the effort to do so. If left in 
place the risk is that any testing will be perfonned in an inefficient way with much of the testing 
unplanned and each test being created off the top of the programmers head. This allows no use 
of identical regression tests as each test run has to be re-invented. The investment in testing is 
not maintained for re-use later on. Clearly a full time dedicated test engineer could bring an 
improvement by creating and performing planned tests. 

Testing - an afterthought 

Testing becomes an afterthought when it is overlooked due to early project pressures or when 
an unenlightened attitude is taken. This is generally a management problem. 

The thinking goes like this: 'Tm short of staff, have tight timescales so let's get on with design 
and coding and leave testing until later. After all, if there's no code, there's nothing to 
test! "What makes this attitude so insidious is that there are grains of truth about it. However, 



www.manaraa.com

202 

"testing" is often used as a general word encompassing all V & V activities, but V & V cannot be 
bolted on at the end of the coding stage of a software project. Considering the software lifecycle 
makes it clear that V & V needs to happen from start to finish. While the designers are designing, 
the V & V plans, and tests should be in preparation. This is ideally done in parallel by an 
independent V & V team who may also be reviewing the designer's output This team, given 
their role, will be keen to speak up for V & V from requirements analysis onwards, so the project 
is not allowed to forget V & V until it is too late to be effective. In fact without well documented, 
testable requirements the V & V team cannot begin their preparations, so they have to apply 
pressure to clarify requirements at the earliest possible time. This can only benefit the quality of 
requirement specifications which in tum serves to benefit the whole project lifecycle, IT 
STARTS DEVELOPERS' GUIDE (8). 

To "prove" the software works ... 

The wrong definition of testing may explain problems with inefficient testing. How often have 
you heard someone say that testing is done to "prove" that the software "works"! This is so 
imprecise as to be useless and even damaging to efficient testing if allowed to go unchallenged. 
This must be changed. 

A test case is like a scientific experiment. An hypothesis must be held about the behaviour 
expected to be exhibited. 

This is expressed in terms of inputs or stimuli, and associated expected results, based on an 
hypothesis. A test, or experiment, is now performed with the aim of disproving the hypothesis, 
or in other words, finding an error in the software. With a successful test or experiment we 
learn something new. If the test or experiment exhibits the expected behaviour we have only 
confirmed expected behaviour in one specific set of test or experimental conditions. This does 
not constitute proof of behaviour in any other conditions but does increase confidence. 
However, when the test or experiment does not result in the expected behaviour we have 
proved that an error exists either in the hypothesis or in the behaviour of software or 
experiment, and have added to our knowledge. 

Added value 

Armed with the knowledge of a software error we may then search for its cause and correct the 
error. This adds value to the software by increasing its qUality. 

Good tests find errors 

The result of this change in the definition of testing leads to the conclusions that a "good" test 
fmds an error or errors and that one must never plan testing with the assumption that no errors 
will be found, MYERS (3). 

The benefits of independence 

What then are the benefits of having independence in V & V activities? Some have already been 
mentioned: 

The encouragement towards planned testing which is more efficient and maintains the 
investment in testing through the use of test planning documentation. 

The consideration of testability throughout requirements analysis and design is encouraged. 
When there is always someone purely responsible for testing it is less likely to be overlooked. 

Better management visibility of testing progress by measuring the success of testing as 
proportional to the number of errors found. 



www.manaraa.com

203 

Objectivity in testing leads to more efficient error detection, BElZER (5). 

Objectivity 

One of the most important benefits of independence is objectivity. 

Most of us, if we have written software, have had the experience of looking for an error and 
being unable to spot anything wrong at all, only to have the first person who glances over your 
shoulder point it out immediately! This success can often be put down to objectivity. We all find 
it difficult to fmd mistakes in our own work. Thus someone independent to carry out testing, 
who is not limited by the possibly subconscious belief that all is well, is more likely to cast an 
objective eye over software and will be more efficient at tracking down errors. 

How to achieve independence in V & V 

If you are now convinced that some measure of independence is required in V & V activities we 
must now ask how to achieve it and consider the various ways. 

Peer reviews 

A peer review is the process by which individuals in the same software development team 
reviewing each others work with the aim of discovering errors. It relies on a co-operative 
atmosphere in which constructive criticism is directed against the software not at individuals, 
WEINBERG (1). This works best in small, friendly projects and when timescale pressure is 
not too high. Organisation problems increase with multiple teams and when timescale pressure 
is exerted it is generally the reviewing task, rather than the programmer's own design and code 
work, which is hurriedly done. Some of these problems may be overcome by formalising the 
process. Methods of review include the walkthrough and inspection as mentioned earlier. 

Code swap testing 

Code swap testing is rather like peer review, except that individuals produce their own design 
and code. Another programmer writes unit tests from the top level design and detailed design 
and then runs these tests to fmd errors in code produced by the original programmer, who fixes 
any errors found. As with peer reviewing this technique adds some independence where the 
overhead of a specific independent V & V team is not warranted due to small project size but the 
same problems apply and close monitoring by managers to ensure equal attention is paid to 
these activities is essential by planning both implementation and testing activities explicitly for 
each resource and carefully monitoring progress. An active software QA department can often 
assist the manager with close monitoring of the lifecycle activities, provided sensible control 
gates are defined between phases. 

Audits 

A tester or other programmer may be called upon to check the procedures used, documentation 
generated and technical content of a programmer's work for errors. The software QA 
department could well be involved in this activity but would not usually be expected to comment 
on technical content. 

Independent Verification team 

Full time V & V staff 

The independent V & V team, consisting of software engineers engaged in full time testing, is the 
best method for achieving objectivity and effective V & V. The degree of independence depends 



www.manaraa.com

204 

to some extent on to whom the team report but the essential benefits accrue from someone other 
than the designer/programmer performing the V & V activities. 

Who should make up the team? 

Experience helps in any task and IV & V is no different. 

Arguably, some of your best staff should be tasked with setting up the IV & V team before the 
development teams begin work. This will pay dividends in flagging early the misconceptions, 
omissions and mistakes which are rife at the start of any project, allowing them to be put right 
before too much damage is done. It requires good experienced staff in the IV & V team to 
criticise tactfully some of your equally experienced designers when they occasionally get it 
wrong. We all make mistakes! 

It also requires time to develop an IV & V team. They do not grow overnight and much training 
and development is required to encourage the right methods and attitudes. 

What does an IV & V team do? 

An IV & V team is involved throughout the software lifecycle from requirements through to 
software acceptance always with the aim of finding errors. This involves attending a multitude 
of reviews and in parallel developing planned testing. When code is available the team's role 
concentrates on software integration, although this can be assisted by the designers, and 
software testing. It is important that the IV & V team run a well kept problem record system that 
allows them to track errors until they are seen to be fixed by the development team. In my view 
the IV & V team should never fix the code otherwise the designers would miss out on feedback 
as to where errors were found in their code and the independence of the V & V team would be 
compromised. 

How to measure the success of an V & V team 

The ultimate measure of success for an IV & V team must be the errors raised set against the cost 
of finding those errors. 

As exhaustive testing is considered impossible for anything but a trivial piece of software, 
testing must therefore be an economic process. So, contrary to the feelings of many managers, 
the IV & V team are more successful, the more errors they find. One word of warning, however; 
the IV & V team are also fmding errors prior to testing, so one must take account of all the 
review errors identified by the IV & V team in order to obtain a fair indication of their success. A 
good review record system helps with this task. 

Problems 

Although the concept of independence in testing has been around for some time, MYERS (3), 
and much lip service has been paid to the benefits of having an "independent" person, usually 
taken as simply a "different" person, to review and/or test a piece of software, relatively few 
independent test teams exist, to my knowledge. Possibly because initially a management belief 
in the benefits has to be held in the face of the unavoidable initial increase in cost of allocating a 
fair proportion of project effort to work solely on the V & V side of the lifecycle. 

It must be admitted that over the past decade managers with a predominantly software 
background have not been common, although numbers are growing, and with little knowledge 
of software and scant evidence to back productivity claims it is little wonder that individuals 
with a belief in IV & V have been thin on the ground. For developers of large software systems 
this is exacerbated because large software systems have more problems both managerial and 
technical. Thus they have more to gain, but the very size of the problem does not lend itself to 



www.manaraa.com

205 

taking risks with a new method on the basis of belief. Who can afford to run experiments 
alongside that crucial large software development in order to gain the appropriate proof? 

Independent Organisation 

Here the independence in V & V activities is achieved by engaging a company separate from the 
prime software or system developer to perform V & V on the end products. As the most extreme 
form of IV & V one might think it gained the maximum advantage and this is probably so if 
limited to final acceptance testing of an entirely functional nature. However, it falls down on a 
number of points which may result in problems for both customer and supplier. These are : 

Testing, especially acceptance testing, can never create high quality software it may only serve 
to catch a selection of the errors which may remain in a piece of software at the end of the 
lifecycle. 

Quality is built into software throughout the lifecycle and an IV & V team can assist in reviews 
from requirement to implementation to improve the final product. This role, in my view, is 
unlikely to be offered lightly to an external and possibly competitor company. The success of 
this area of activity improves with better co-operation between design and test teams 

The in-house IV & V team would take on board much testing of a structural nature, e.g. 
integration of software units and again good working relationships between design and test 
teams are essential to find problems and fix them in a timely fashion. This degree of 
involvement is unlikely to be achieved by an external agency. 

The MASD Experience with IV & V 

Background 

Maritime Aircraft Systems Division produce aircraft mounted submarine detection systems 
which process and display data from submarines via a variety of sonobuoys. These systems 
have been fitted to both fixed wing and rotary wing aircraft for use by the RAF and Royal Navy 
and have significant export sales to their credit. 

The division has the capability to perfonn all aspects of design, development, production and 
support for these systems and this includes a large software development facility. 

Task Explosion 

Since the late 1970's, the capability of microprocessors and associated memory components has 
exploded. With this vast increase in capability of the devices came an expectation of dramatic 
improvements in system capability. This in tum expanded the tasks and the problems involved 
with developing reliable software for large, multiprocessor, real-time systems. 

Increased Problems 

These were problems of scale. In a division where in the mid 1970's around 3 staff were 
dedicated to only software work, by the mid 1980's one particular project alone had 
approximately 250 software engineers engaged in development work. Clearly methods and 
organisation would have to progress in order to cope. Of course, it was a gradual process, but 
one of the ideas tried was first to allocate specific staff to system integration and testing 
(including software testing) and then to extend the idea and attempt to fmd errors as early as 
possible in the Jifecycle by creating an I V & V team on a single project as a trial exercise. This 



www.manaraa.com

206 

proved successful enough to be extended into an IV&V group involved in all software projects 
within MASD. 

How the IV & V Group was developed 

Initial experiences 

On the flrst project which had the benefits of an IV & V team, the emphasis was very much on 
developing the concepts about how the philosophy which instigated this team was to be useful 
in practice. It took time to work out the ground rules for supplier-customer and customer
supplier relationships between the design and IV & V team and the IV & V team and system 
integration team respectively. The ideas were quickly taken up but in practice each software 
handover necessitated negotiation regarding speciflcs. No matter how good the codes of 
practice are in the area of software testing and responsibilities, the first time your fledgeling 
IV & V team reject a piece of software due to lack of some piece of documentation, or 
insufficient module testing, you will have a lot of feathers to smooth down if the relationship is 
to remain co-operative and the criticism is to remain constructive. See BElZER (6). The concern 
felt at this stage will be at least equal to the elation felt when the IV & V team complete a 
successful software handover having raised armfuls of problem records and meticulously 
checked all of the flxes from the designers. 

Creating an IV & V Group 

To create an IV & V group to cover eventually all software projects, more staff were clearly 
required. Also, as these projects already had software teams of some experience, there was a 
need to assure them of the good intentions behind the new organisation. Convincing 
presentations from myself and the IV & V team leader were instigated to sell the idea of IV & V as 
a useful contribution to the software development activity and that to be a part of that team was 
intellectually challenging. In recruitment the stress was placed on recruiting "test case 
designers" rather than the more general term "tester" , to emphasise their rightful equal status 
with implementation designers, BElZER (6). The job title "software engineer" was kept for the 
"test case designers" to stress their involvement with the whole software lifecycle. 

The aims were to automate testing wherever possible and otherwise to engage technical 
assistants to run repetitive tests thus freeing the test case designers to spend more time 
reviewing, producing planned tests and evaluating results. 

Clearly we had to dispel the fear of week after week of repetitive test running as being all V & V 
was about. The idea that testing was boring was largely overcome and a number of recruits 
joined the group. 

Training - a mechanism for change 

Initially, training was essential to encourage the right approach, and a suitable course, designed 
by the NCC, was identified which was eventually brought onto the GEC Avionics site for 
software V & V training. 

I believe that, although software tools may facilitate V & V, as with all parts of software 
development, it is attitude which distinguishes a good IV & V team. The psychology of V & V or 
even the methods are rarely given emphasis in software engineering degree courses, but V & V 
can account for around 50% of project costs. See IT STARTS DEVELOPERS' GUIDE (8). 
Until this mismatch is addressed in higher education, companies must look to provide suitable 
ab-initio training to allow designers to begin to think like true testers. 



www.manaraa.com

207 

In order to practice what we preach, our own trainee software engineers (TSE) do a "tour of 
duty" with the IV & V group, as they do with other groups in the division during on-the-job
training and often wish to return when their training is complete. 

The college which provides our TSE's with general training has been encouraged to include 
. more time on V & V in the custom designed HND Software Engineering course taught to our 
TSE's. 

These initiatives have become on going processes by which enlightened attitudes to testing are 
encouraged across all software engineers and new blood is found for the IV & V group to enable 
it to become self perpetuating. 

Team Identity 

As with all teams or groups, the encouragement of group identity by clearly defmed roles and 
responsibilities, and by opportunities for social gatherings assists the group to stay coherent and 
share aims for future progress. Organising a V & V group Christmas meal or a celebration for 
the lOOOth problem record raised help with building a group. This is especially necessary when 
that group are involved in an activity which is considered new within an organisation as this 
tends to create insecurity. The insecurity is probably well founded because it it unlikely that the 
fIrst use of IV & V teams will meet with unanimous approval and an early success is always 
helpful in consolidating a new position. 

The disadvantage may, however, be turned to an advantage in team building. The psychology 
of groups is such that an external threat, whether real or perceived, tends to enhance group 
(team) identity. Given a great deal of hard work, early successes will come and if 
acknowledged, as above, serve to create team pride which enhances team identity and should 
fmally put to rest any doubt that staff had about belonging to a test group. 

Important lessons 

The most important lessons to come out of this experience with V & V are: 

• it improves planned testing markedly 

• it does fInd errors earlier but don't expect software to be completely error free as 
system integration often identifies software to software subsystem interfacing problems 
and the errors missed by the prior testing. 

• it improves management visibility of real and measurable progress in software 
development. 

• it is crucial that the IV & V team are run by managers and team leaders who understand 
the concept and believe in it. A V & V team will wither if run by a manager intent on 
getting the code fmished, and leaving V & V until later, and who is then disappointed 
when errors are found. The IV & V team must be independent enough to be allowed to 
go for errors in a determined way, and to be supported by their team leaders and 
managers when they fInd problems. To be fair, it is extremely diffIcult to give the 
judgement of Solomon between generating software within timescales and fInding the 
maximum amount of errors. Better to have two managers argue it out; it's easier than 
arguing with yourself! 



www.manaraa.com

208 

Summary 

Not only is V & V currently important, but it will remain so despite new methods and CASE 
tools. The effectiveness of V & V activities can be greatly improved by the use of staff separate 
from the design and implementation activities. The degree of this independence appropriate 
depends upon the circumstances. However, any independence is better than none. 

Why should you use I V & V teams? Given that the CSR conference theme is "Large Software 
Systems" the delegates are certain to have an interest in finding ways to improve the outcome 
when producing large amounts of software. In this area IV & V is most pertinent. 

Give it a try. Don't expect miracles over night, but when in place, I believe you should see 
improved management visibility of the software development process, more effective planned 
testing and an improvement in the quality of software being released to customers or to the next 
phase of system testing, depending on your circumstances. 

References 

1. G.M. Weinberg, The Psychology of Computer Programming, Van Nostrand, New 
York, 1971, pp 52 - 64. 

2. G.1. Myers, Software Reliability, John Wiley & Sons, New York, 1976, pp 169 - 195. 

3. G.1. Myers, The Art of Software Testing, John Wiley & Sons, New York, 1979, pp 4-
16, pp17 - 35. 

4. B.W. Boehm, Software Engineering Economics, Prentice-Hall, New Jersey, 1981, pg 
37. 

5. B. Beizer, Software Testing Techniques, Van Nostrand, New York, 1983, pp 5 -7. 

6. B. Beizer, Software System Testing and QA, Van Nostrand, New York, 1984, pp 179-
182, pp 315 - 317, pg 317. 

7. Hennell, M., Testing Throughout the Lifecycle. In Software Engineering - The Decade 
of Change",Ed. D. Ince, Peter Peregrinus/lEE, Stevenage, 1986. 

8. IT STARTS Developers' Guide (Version 1), NCC, Manchester, 1989, pp 2.25 - 2.30, 
pp 8.12 - 8.35. 

9. 00-55, Interim Defence Standard - Draft Issue, MOD, 1989. 



www.manaraa.com

9 
THE RECOVERY OF SOftWARE PROJECfS 

DR SINCLAIR G STOCKMAN, AFIMA 
Systems and Software Engineering 

Research Division 
British Telecom Research Laboratories 

Martlesham Heath 
Suffolk 

UK 

KEYWORDS 
Management, Software Management, Project Control, Process Improvement 

ABSfRACf 

The past 5 years have seen significant improvements in the management of software projects. 
This is evidenced by the introduction of quality management systems into software 
development organisations and the progress made in the certification of such systems 
(Ref[1,2,3]). 

A situation which has faced many project managers during this period has been how to 
introduce improved management and technical methods and tools into a project which has 
already started, but is suffering from many of the symptoms of a project which is out of 
control, and which would benefit from these new methods and tools. 

[n this paper we will present practical guidance on how to bring 'problem' projects under 
~ontrol, so that the advances of software engineering can be made use of, if appropriate, by 
the project manager. This process is referred to as project recovery. 

The paper will start by discussing some of the common symptoms of a 'sick' project. 
Knowledge of what to look for can enable project managers to identify problems at an earlier 
,tage and thereby take more effective corrective action. 

We then move on to setting out the steps which can be taken to achieve project recovery, and 
lOW these steps should be implemented. There are many important issues which have to be 
loddressed here. The introduction of new techniques into an existing project is fraught with 
:lifficulties. If the process is mismanaged, the project can end up in an even worse state. 

Following on from this, the paper will identify how the use of software tools can help in the 
lbove recovery process. Several tools, ranging from documentation aids to management and 
echnical tools will be discussed Again the dangers, as well as the benefits, of the 
ntroduction of new tools will be presented. 

209 



www.manaraa.com

210 

In addition to the 'technical' problems inherent in the implementation of a recovery program, 
the paper will address the issue of staff antagonism towards recovery programs. It is essential 
that managers address this issue actively, otherwise their efforts can be frustrated by staff 
who misinterpret changes in management practices as a threat to their status. 

2 WHY RECOVERY? 

Despite claims that the software crisis is over, all is not well. Often the project manager is 
faced with the task of recovering a project which, for various reasons, is not performing 
adequately. It is this problem which this paper aims to address - the recovery of software 
projects - for it is only by the proper management of this recovery process that the project 
manager can hope to bring to bear the promised advantages of the new generation of software 
engineering methods and tools. 

There are many causes for a project slipping into a state where it is in need of recovery. One, 
which is likely to become more prevalent in future years, is the increasing volume of 'old' 
software systems which will be in use and which will require further enhancement. We are 
becoming more successful at delivering systems to the marketplace. These systems often have 
a lifetime of greater than 10 years. During this time the software will probably have to go 
through several phases of enhancement and be transferred between several support and 
development teams. In these circumstances, the likelihood of a project being in need of 
recovery, is high. It is therefore vital to understand how to realise the recovery of a software 
project, in order to be able to make use of the advances likely to occur 
in software enabling technology. 

Projects which are still in the initial development phase can also be in need of recovery. 
Problems may have arisen due to slack management or the project suffering from a series of 
false starts due to changing requirements. 

Whatever the reason, if some form of recovery process is not applied to these types of project, 
they are likely to slip further into chaos, and, after a period of being a heavy drain on scarce 
resources, ultimately collapse. 

3 THE SICK PROJECf 

A sick project is one which is in need of recovery. Two issues are addressed in this section. 

1. Firstly, what are the symptoms of a sick project 

2. Secondly, what are the causes of sickness. 

Sickness takes many forms, from transitory to severe. In this paper I will focus on 
the symptoms of severe sickness, that is those symptoms, which if they are not 
addressed, will result in the project eventually collapsing. 



www.manaraa.com

211 

3.1 Symptoms Of A Sick Project 

Things to look for include: 

1. The busy team - lots of panic - fuefighting -

Many projects are populated by staff, both managerial and technical, who thrive on 
chaos. It is important to recognise this element of enjoyment because often, in the 
initial and intermediate stages of sickness, staff on the project may appear to be happy 
with their lot In evaluating whether a project is in trouble, one must be able to 
differentiate between a project where the resources are being effectively utilised to 
meet tight deadlines, and those where staff are busy running around in circles, 
achieving little. The latter is often characterised by a large number of 'key' staff e.g. 
'Only Fred can do this" - or - The project manager has it all in his head'. This type of 
chaotic situation can only continue for a limited period of time, after which the project 
team will start to breakdown and ultimately the project will grind to a halt 

2. Everyone is busy, yet few statistics on what is being done-

Closely related to this theme of the busy team is the situation where everyone is busy, 
but there is no information on what is being done. 

Consequently it is impossible to manage the project out of any crisis because the 
manager has no feel for how any change in strategy or procedure will affect progress. 

Useful statistics to look for are: 

1. What time is being spent on problem evaluation and fixing? 

2. How many problems are being cleared per month? 

3. How much time is being spent on development, management, testing? 

3. No future release plans are in place -

The absence of release plans is a clear indication that a project is in trouble. 
Effectively the project team is being focused on sorting out today's problems to the 
exclusion of any development effort for the future. The team are working in a 
strategic vacuum and ultimately the project will be suffocated and die. 

4. No effective configuration management -

This ranges from uncertainty on how to build the system to no knowledge of the parts 
which comprise the system. 

Inevitably software systems consist of a number of parts, which when combined 
function in a particular way. Yet a large number of software projects have given little 
if any thought to how they are going to control these parts. It is frightening that in 
many cases not only is there ambiguity about how the parts are put together, but the 
release team do not know which parts are supposed to go into the release. 

A consequence of this type of scenario is that valuable effort is being wasted rewriting 
build fIles, making a set of releases in quick succession as errors in the previous builds 
are discovered, and expending significant effort on all of the activities associated with 
the release process. 



www.manaraa.com

212 

5. On-site bug fixing -

Having released a system with a large number of problems, the software flying squad 
is sent in. This team dive straight into the code on the customer's site and attempt to 
effect immediate solutions. No time is spent addressing the design or trying to analyse 
the problem. This team are effectively hacking the system, sniping at problems and 
probably aggravating problems. 

This is one of the classic features of a sick project. 

6. Ineffective plans -

Sometimes no plans, sometimes out of date plans, sometimes plans which can't be 
used for control either because they contain too little information, or because they 
are too complex. 

Plans act as a framework within which to exercise control. They are a model of the 
project. Where there are no plans, there can be no control. 

Where the plans are out of date, the control will probably be misdirected. 

Where the plans are not being read, efforts at control will be misinterpreted and often 
ignored. 

Where a plan does not contain provision for control, for example by not giving any 
visibility of potential problems until the end of a project, then it cannot be used as a 
basis of control early in the project. 

7. Unclear product strategy -

A major cause of wasted effort and consequently project sickness, is that staff on a 
project do not understand what the objectives of the projects are. 

In this environment, staff can often take what they think is appropriate action only to 
fmd that they are causing further problems. 

Where there is not a common vision within the project team, then it is not surprising 
to find the members of the team all working towards different goals. Large numbers 
of staff simply do not understand what they are trying to achieve. 

8. Growing problem lists -

Sick projects often have the major proportion of their resource being expended on 
fixing problems. Yet often, the number of problems continue to rise. 

In addition, often their is no process of prioritorisation in fixing problems. So effort 
is expended on fixing problems which are not perceived as a major problem, while 
major problems remain unfixed for months. 

9. Cost and schedule overruns. 

Cost and schedule overruns are in themselves not indicative of a sick project. They 
become problems when no action is being taken to bring these overruns under 
control. 



www.manaraa.com

213 

A point worth emphasising is that the staff working on a sick project are often highly 
competent, dedicated and hardworking. They may even have to hand the correct tools. 
But a project is not simply comprised of individual parts - it is in itself a system and it 
is this system which is sick and needs to be subjected to recovery. 

What, therefore are the causes of this sickness. A general cause, often given, is 
lack of a managerial and strategic framework within which the project can progress. 
This is part of the story - certainly if such a framework does not exist, then a 
project will run into problems. But the existence of a managerial framework is in 
itself far from sufficient. A much more common cause of sickness is failure to 
actively manage a project at various levels. 

4 KEY ISSUES IN RECOVERY 

Given that you are faced with a sick project, how do you set about recovery? 

1. Recognition 

If you don't know you have a sick project, you are unlikely to plan any recovery 
treatment. Yet this is where most problems arise. If identified early the treatment can 
effect complete recovery, if left undetected, the illness becomes so severe, the project 
is beyond recovery. The symptoms discussed previously are indicators. Project 
managers and quality auditors should always remain on the lookout for these 
symptoms. 

2. Staff 

The staff are the most valuable and important asset in any project. In many ways, the 
management of the recovery process hinges on the effective management of the 
project staff. 

3. Planning 

Recovery will not happen by itself. The process needs to be planned and resources 
made available. 

4. Tools 

As with any process, any aids to automate the process will make it more effective. 

5. Finally control. 

As stated above, it is not enough to plan for the recovery. The process must be managed, and 
by its very nature, an intensive level of management is required for the recovery process to be 
successful. 

There are several issues which must be stressed. 

Firstly, recovery is not easy. It must be planned strategically and often calls for management 
of the highest calibre. If the recovery process fails, it is likely that the project will collapse. 
When a multi-million pound project is involved, this is obviously a major economic failure. 
If the project is a strategic component of a set of developments, then the ripple effects of this 
failure will spread outwards into these related projects. 

Secondly, recovery is long-term. It cannot be effected within a few weeks and requires 
continuous effort, often over a number of years to sustain recovery. 



www.manaraa.com

214 

Lastly, the project may 'reject' recovery. It is important for managers responsible for effecting 
project recovery not to assume that all those involved with the project will welcome their 
efforts enthusiastically. 

These points combine to make project recovery a difficult task, requiring skilled management, 
hard work and a clear vision, not to say a steady nerve. 

5 A TALE OF RECOVERY 

I will now try to illustrate what is involved in project recovery with an example scenario. 

Firstly, what were the symptoms. The project was a critical project, involving the use of state 
of the art system architecture. The target market was volatile. The original plans were 
optimistic. Software was being developed in advance of the hardware being available, and the 
specification for the hardware was not fixed. There was a finn release date for the first system, 
which could not be slipped, but no defmed release plan. The project team was highly skilled. 
The team was, however, involved almost exclusively in fire-fighting, trying to cope with a 
combination of changing requirements, changing hardware and a growing list of problems 
with the software. Consistent configuration management procedures were not in place and the 
project was not going to meet the required deadlines. 

Against this background, what was to be done. The first crucial step was the realisation that 
there was a problem. The next was admitting to the existence of the problem and planning 
recovery action. This was not easy. For management to admit to serious problems requires 
them to accept that they have not been successful in perfonning their primary task. It requires 
a constructive culture to ensure that management teams feel able to admit to problems. 

The course of treatment was carefully planned. Firstly the interfaces between the team 
responsible for technical development, the team responsible for product release and installation 
and the sales team were clearly defined. This was crucial in allowing priorities to be 
identified and individual managers to be identified with clear responsibility for certain areas. 

Next, the project priorities were identified and agreed. This process involved accepting that 
everything couldn't be defined as a high priority. A picture was created of the strategic 
requirements for the project, initially over a six month period and ultimately extending to 
several years. This has to be set against the pre-recovery situation, where the picture rarely 
extended beyond a few weeks. 

The current role of the staff involved on the project was then established. This is essential for 
several reasons. Firstly, the staff need to be convinced that they are an integral part of the 
recovery process. Secondly, it is necessary to obtain a clear picture of what the staff perceive 
as their priorities and roles - often this differs from that of their management, or between 
different teams in the project, notably the development team and the product release team. 
Thirdly, it is important to identify early on where the weaknesses in the current organisation 
lie. These often result from overall development being impeded by a bottleneck in the 
development team, because one staff member has too much responsibility. 

The third step in the recovery process was to get on top of what existed. Understanding what 
the system does can come later - for the time being accept that it does what it does. If you are 
to gain control of a project and start to plan strategically, then it is essential to establish 
definitively what the component parts of the system are and how they are combined to produce 
the product in its current fonn. This provides a firm foundation for any future system changes. 

Following on logically from this, well defmed configuration management and change control 
procedures were introduced into the project. Failure to do this has been the death knell of a 
large number of projects. 



www.manaraa.com

215 

Having completed the above, it was possible to begin to manage the actual recovery. 

The ftrst step was to determine how much effort was being expended on strategic 
development and how much was being expended on frreftghting. A plan was created to 
decrease the % of frreftghting activity over a time period of 12 to 18 months. 

All known problems were identified and prioritorised. Then timescales were agreed on when 
these problems would be fixed and they were built into future release plans. 

Release plans for the project with well defined contents for each release were created and 
agreed. 

It goes without saying the creation of acceptable release plans is not an easy task, nor is there 
any set formula to follow. It is a skilled management task, requiring vision, determination 
and realism. 

The next step, having put in place a work program to achieve the above priorities, was to 
establish an up to date specification. This acted as an essential reference point for future work 
on the project. In parallel with this, the project documentation was updated in line with 
development work being undertaken on the project. 

The tactic here is to update documentation as and when it is needed, rather than expend a large 
amount of scarce resource updating documentation on parts of the system which may remain 
untouched for a considerable time period. A normal frrst step is to establish the structural 
design of the system. Next put in place test programs for the project. This will have to be 
effected in stages, with the most critical and troublesome components of the system receiving 
priority attention. Given the structural design of the system, it is possible to identify the key 
components and ensure that there is more than one staff member who understands that 
component. 

6 THE WEDGE 

A key objective of this type of recovery process is to establish a well defined plan for the 
upgrade of the system and a clear timetable for increasing the % of effort being expended on 
strategic development to a level which allows the project to progress relatively normally. 

Having achieved the above, you now have a framework into which you can introduce new 
technology to assist with increasing the overall productivity of the project. 

Whilst the above list of actions may seem somewhat obvious, it is surprising that this type of 
approach is not more commonly used. A more normal approach has been to try to throw 
more technology and more staff at the problem, all of which is more likely to 
compound the problem than solve it. 

For example, tools are bought in the absence of defined methods or procedures for their use. 
Valuable time is wasted trying to learn how to use them and then, when they finally come on 
line in the project, they do not fit in with the other methods already in use. Often different 
tools are bought by different parts of the team to solve the same problem. This tends to 
reduce the level of communication across the team. 

7 WHAT CAN GO WRONG DURING RECOVERY 

The previous set of actions seems relatively straightforward, but needless to say there are 
many pitfalls. A few of these are addressed below. 



www.manaraa.com

216 

Firstly configuration management. During a recovery process, or indeed during any software 
development process, management must give a high priority to establishing clear procedures 
for configuration management and change and build control. A common problem which arises 
during recovery, if these procedures are not established, is that either no one knows how to 
build the system, which normally results in numerous erroneous releases which further 
compound the chaos the project is in, or worse still, no one knows what parts actually 
comprise the system, again resulting in much the same effect. 

Configuration management tools are brought in, but no procedures are established for their use 
and code modules can 'disappear' into the bowels of the system, never to reappear. 

Secondly, a common pitfall is in the area of project management. Recovery is a management 
rather than a technical exercise. Management is a decision intensive activity. During recovery 
many management decisions will have to be taken, and these will have to be taken in such a 
manner to ensure that the project does not reel from left to right getting nowhere. The worst 
that can happen to a sick project is to have either a manager who is over cautious, or a manager 
who reacts instantaneously to problems. 

An inappropriate level of quality control is a third prime cause of failure in recovery. It is 
essential to effect quality control during recovery, introducing change control, reviewing and 
testing. It is equally essential, however, to ensure that the quality control being exercised 
does not grind the project to a halt. When undertaking recovery, one is already in a risk 
situation; that is the risk that the project may fail completely. To come out of this situation, one 
cannot expect to remove all risk, rather one must aim to minimise risk. So the management 
must exercise active control over their quality control program and have a clear understanding 
of the risks they are taking. 

8 TOOlS FOR RECOVERY 

The philosophy of the recovery process outlined above is to establish a relatively stable 
framework within which software enabling technology can be introduced to assist with the 
progression of the project. 

A maxim which should be followed is that 'simple is best'. There is much which can be 
achieved with simple tools and these should be exploited. Taking a few examples. 

Configuration management tools. These are essential. Having established well defmed 
procedures, tools such as CMS, SCCS (Ref [4]) etc are invaluable in providing a vehicle for 
effective, efficient change control. They allow management and the development team to have 
an accurate picture of the composition and change history of the product. 

Documentation tools allow for the development of consistent documents and greatly ease the 
interchange of information between project team members (Ref [4])/ 

Planning aids, for example pert and gnatt planning tools allow management to create and 
communicate plans in a clear, unambiguous formats. In addition, the automation of the 
planning information, allows the plans to be kept up to date. 

Testing tools provide information on the test coverage, and allow managers to identify gaps in 
the current quality control procedures which will require strategic planning to clear in future 
releases (Ref [4,5]). Even simple testing tools which provide an online facility for recording 
test results and provide an automated summary list of test which have been run and those 
which have not been run can be invaluable for improving the level of visibility of testing to 
management. 



www.manaraa.com

217 

Each of these tools in themselves is of assistance. But they are made all the more effective 
when available through an IPSE type framework, which provides for interworking of the tools 
and communication of information between project team members (Ref [4.6]). 

It is the contention of this paper that the recovery steps outlined earlier provide a framework 
within which this type of IPSE technology can become available to the project manager faced 
with the task of bringing a sick project under control. Further in the absence of such a 
recovery framework, even IPSE technology will be of no use in bringing this type of project 
under control. 

Assuming that the tools are being introduced within the recovery framework outlined above, 
there is still much which can go wrong. Tools are automatic aids. They run on computers, 
and usually they are very expensive on machine resources. If one does not plan for their 
introduction, then configuration management and testing tools can bring the development to a 
standstill by overloading the development environment computing facilities. This further 
highlights the need for careful planning during recovery. 

Another point to note is the need for the tools to be appropriate. While there are many 
attractive design tools currently on the market, they are unlikely to make a major impact on a 
project which is in the throes of recovery, unless they automate an already existing method. 
To introduce a new design method without allowing a substantial lead time, will probably 
result in the development team falling even further behind in schedules because of long 
learning curves and unnecessary duplication of development activity. 

If planned, tools are key in ensuring the success of a recovery program. A good example is a 
configuration management tool set which, when introduced in conjunction with a well dermed 
set of procedures, can result in control and stability returning to the release phase, a significant 
reduction in avoidable system construction errors and a substantial reduction in the amount of 
effort being expended on post release problems. 

9 STAFF 

Turning now to one of the most important aspects of any recovery program, the project staff. 
It is unlikely that a complete change of staff when you start a recovery program is either 
feasible or desirable. 

The project manager responsible for the recovery process must remember that project staff are 
likely to feel vulnerable. Many of the technical decisions and managerial decisions they have 
taken in the past are likely to be brought into question. Often these decisions, when 
considered in the light of the information which was available at the time they were taken, may 
be found to be reasonable, but with the benefit of hindsight and a clear strategic understanding 
of what the project is trying to achieve, they are obviously incorrect. In this situation, 
management must ensure that the staff do not mistakenly suspect that a witchhunt is in 
progress. 

Project staff must be involved in the review of the project and the process of establishing 
clear procedural frameworks. They must also be involved in identifying which tools should be 
introduced into the project. This does not mean that the project is run by a committee, for in a 
recovery situation strong management is called for; but time must be taken to ensure that the 
project staff are given the opportunity to place their ideas on the table - and the project 
manager must ensure that he gives these ideas due consideration. 



www.manaraa.com

218 

Staff are likely to feel very possessive about the code they have written. When trying to 
introduce a recovery process, it is essential to 'depersonalise' the code, by dismantling the 
expert cartels within the project This process can be perceived as a threat by staff who may 
feel that being an expert gives them extra status. This perception must be countered by the 
project manager. The advantages of depersonalising the software, for example less weekend 
working, greater flexibility in leave entitlement, improved career flexibility, must be stressed. 

There are occasions when even after these advantages have been pointed out, some staff 
members will try to resist the efforts being made to effect recovery - that is, they are rejecting 
the treatment. In these circumstances, the manager must take strong action to replace such 
staff members as soon as possible. If possible, they must be taken off the critical paths and 
ultimately off the project. Hopefully this will be the exception rather than the rule, but the 
manager must not sidestep this problem when it arises. 

Another point to note is that managers must not underestimate the advantages the introduction 
of some new blood can have on a project. Often new staff can quickly clear problems which 
have baffled the 'expert' staff for several months. 

During recovery, the project manager must establish a working team hierarchy. While 
retaining overall control, significant responsibility for the recovery program must be devolved 
to the team leaders. This guards against a team of indispensable technical experts being 
replaced by a single managerial expert, a situation which would represent a clear backward 
step. 

10 CONCLUSIONS 

Project recovery is not an exact science, rather it is a process built up from experience. The 
objective of the process is to establish, or re-establish a project framework within which it is 
possible to exercise state of the art project management techniques and make use of software 
technology approporiate to the needs of the project i.e. to minimise the amount of frrefighting 
and maximise the amount of strategic development work. 

The process discussed in this paper has been and continues to be successful. 

The main messages of this paper are: 

1. The need to plan recovery, in terms of technical activities, quality procedures, 
staff utilisation, computer resource utilisation and release planning. 

2. Commitment - Recovery is not an easy process. It requires a high level of 
commitment on the part of the management team and the staff involved. It 
also requires commitment from the funding management and an understanding 
of the timescales involved. Recovery must not be viewed as a short term 
process when making the decision on whether to proceed with it or stop the 
project. 

3. Vision - The process requires vision, particularly on the part of the key 
management. 

4. The process requires a high degree of level headedness. There are many 
things which can and probably will go wrong along the way and the manage
ment will be required to make many difficult decisions. It will only be possible 
to make these within the framework of a recovery program spanning a 
timeframe of 6 to 24 months, otherwise the project will veer from side to side 
before finally foundering. 



www.manaraa.com

219 

Acknowledgement 

Acknowledgement is made to the Research and Technology Board of British 
Telecom for permission to publish this paper. 

11 REFERENCES 

1. International Standard on Quality Systems, IS09000, 1987. 

2. AT&T Technical Journal, Vol 65, Issue 2,1986. 

3. Proceedings of First European Seminar of Software Quality, April 1988, 
EOQC, Brussels. 

4. Department of Tmde and Industry STARTS Guide, 2nd Edition, 1987, 
National Computing Centre Publications, UK. 

5. On Software Testing for Multi-microprocessor Systems, 10th EUROMICRO 
Symposium on Microprocessing and Microprogramming, North-Holland 
Publications, 1984. 

6. Project Support Environments, Computer Systems (GB), Vo1.5, No.3, 
March 1985. 



www.manaraa.com

10 
SOFTWARE RELIABILITY IMPROVEMENT - THE FAULT FREE FACTORY (A CASE STUDY) 

BRIAN CHATTERS 
ICL Mainframe Systems, 

Wenlock Way, West Gorton, Manchester M12 SDR 

ABSTRACT 

Effective quality management is fundamental to achieving high reliability 
in complex software developments. This paper discusses the role of quality 
management in the development and maintenance of a mainframe operating 
system with particular emphasis on Quality Specification and Measurement. 
The importance of the relationships between software engineers and quality 
professionals is explored. 

Through a case study, the paper describes the tools and techniques 
adopted, how they have evolved over time together with their relative 
benefits and the overall quality improvements that have been achieved. 

The tools and techniques form part of a long-term strategy to 
establish a fully-integrated software factory producing error free 
products. 

INTRODUCTION 

ICL, part of the STC group, is an international company applying the latest 
generation of information technology techniques in order to provide high 
value customer solutions to today's and tomorrow's business problems. 

The operating system for the medium to large range of processors is 
called VME. It is used worldwide and in the UK is the most popular of all 
available major systems, being installed on more mainframes than the 
operating systems of any other supplier. 

VME is a very large development. It is a general purpose operating 
system which includes basic facilities for running user programs in a 
multi-user, shared environment and addresses such aspects as job 
scheduling, resource management, file handling, cataloguing, security, data 
management and transaction processing. It is an evolutionary system which 
is delivered to its customer base at regular intervals to provide enhanced 
capability as the user requirements evolve with time. 

The major challenge of the tools and techniques used to develop the 
software is to enable new facilities to be integrated into the existing 
software system and continually to seek quality improvement with each 
subsequent release. Each incremental release represents a maintenance 
version of earlier releases and captures error clearances of previously 

220 



www.manaraa.com

221 

detected problems. It is a fundamental requirement for VME to cause no 
disturbance of the customer systems as a result of the installation of each 
subsequent release. This is defined as "non-regression". 

However, having the right tools and techniques to perform the tasks is 
only half the answer. It is equally important (maybe more so) to ensure 
that there is effective management of the development route and that the 
workforce is trained in the use of the tools and techniques. 

This paper discusses the role of quality management in the development 
of VME and describes how the emphasis on quality management has brought 
about significant improvements in the reliability levels of the systems. 

QUALITY MANAGEMENT 

Quality Management is an essential part of the software system development 
process. It serves two major purposes: 

* 

* 

To ensure that quality issues are specifically addressed during the 
planning and implementation phases of software development. It is now 
well established that product quality is not an "add-on" feature that 
can be included after the product has been built. Consequently, a 
clear statement of requirements is required prior to implementation 
and "quality plans" are needed to ensure that these requirements will 
be satisfied. 

To give assurance that the development process is being adhered to and 
to give assurance that the product will perform as required against 
the quality attributes in its target environments. 

Requirements for a product come from three sources. 

* 

* 

* 

Market requirements: state such things as user-oriented functionality, 
price, performance, markets, etc. 
Company strategies: determine the types of products that will be 
produced. 
Quality processes: state how the product is to be produced and how the 
development activities will demonstrate that all requirements are 
satisfied. 

No development route can be effective in delivering quality products 
unless it is supported by a suitable quality management system with 
adequate quality control. Specifically for VME, this means: 

* 

* 

* 

* 

An on-going Quality Improvement Process: fundamental elements of the 
process are management commitment, communication and awareness, 
education, measurement and corrective action. 
Conformance to acceptable Quality Control System standards. Mainframe 
Systems is approved against 1S09001 (BS5750). 
Formal quality checkpoints throughout the development route with 
objective criteria which must be satisfied before further progress can 
be made. 
A documented set of procedures and processes for education and 
reference. 



www.manaraa.com

222 

Quality Attributes 
Many have argued that quality is subjective and that it cannot be 
quantified. Fortunately, these views are now very much in the minority. 
Before quality can be planned and implemented effectively, the activities 
need to be defined in objective terms. One way in which this can be 
achieved is to categorise the quality requirements into standards areas 
known as "quality attributes". Checklists can be generated providing 
standard attributes which are then used at the requirements setting and 
planning stages. Because of the different characteristics of software 
systems, there is no universally accepted set of quality attributes which 
apply to them all. Even when there are common attributes, their 
significance to the overall quality may be radically different. 

In addition to providing a more objective definition of quality 
requirements, attribute' checklists also ensure that non-functional aspects 
of software systems are considered and planned at the initial stages of 
their development (eg installation and maintenance considerations). 

Attributes used in the planning of the VME Operating System software 
are known as "abilities". Significant ones used are: 

* issueabil i ty, 

* functionality, 

* compatibility, 

* availability, 

* reliability, 

* maintainability, 

* performance, 

* usability. 

Responsibilities 
A major factor in achieving quality is to have an effective organisation 
with complementary functions and shared responsibility between teams. The 
biggest dilemma that a project manager faces is when he is up against 
timescale pressures and he needs to make trades. Traditionally, because of 
a lack of understanding of quality, this is the area that is traded first. 
This lack of understanding is also a major reason why unrealistic schedules 
are established in the first place. 

The role of the Quality Assurance Manager is to establish quality 
requirements with the project manager which translate the market 
requirements into quantifiable quality attributes and then to ensure that 
these requirements are met before product delivery. The Quality Assurance 
Manager has a peer relationship with the project manager and has the 
authority to veto the release of a product if the requirements are not 
satisfied. However, the role is seen as supportive, helping the project 
manager to meet his requirements rather than a policeman enforcing rules. 

Management Checkpoints 
A key technique for the management of a project is to use a defined 
development route which identifies phases. Each phase is terminated by a 
checkpoint where an assessment is made of 

* the achievement against the plan for the phase 
* revised predictions of the quality attributes based on the 

measurements taken during the phase. 

Such assessment is formalised and controlled by someone who is 
independent from the development team (eg the Quality Assurance Manager 
performs this function in VME). 



www.manaraa.com

223 

MEASUREMENT 

The purpose of measurement is to provide feedback to the development 
projects to ensure that requirements continue to be met and to allow 
objective corrective action to be taken when problems are identified. 

Measurement is seen as a fundamental tool for the achievement of 
delivered quality. A key element of establishing a quality plan is to 
determine the measures and the targets that will be used to demonstrate 
achievement of the quality attributes. The activity of determining the 
measures is probably the most difficult one with respect to planning. 
Success or otherwise of a project is critically dependent upon establishing 
the right measures which will give assurance that the delivered quality 
will be met. The challenge is to establish measures throughout the 
development process which will give assurance that targets are met without 
recourse to actually measuring the market requirement. For example, a 
reliability trial for systems with a high meantime between failures may be 
impossible to stage . 

The key to success on measurement is to ensure that the measures are 
established and owned by the team which is responsible for the 
implementation of the phase of the development route in which the measures 
are to be taken . It is a recipe for disaster to impose measures which are 
not understood by the development teams and which do not enable ownership 
of problems to be identified. The role of the Quality Assurance Manager is 
to help in the establishment of the measures and to ensure that they are 
agreed and documented in the quality plan prior to implementation. 

A number of techniques can be used to establish measurement (eg T. 
Gilb [1], Dr V. Basili [2], etc). Whichever techniques are chosen, the 
experience of VME has identified a number of basic rules with respect to 
the selection of measurement techniques. These are: 

* Keep the measures simple . The fundamental use of measurement is as a 
tool to manage development (either from an engineer's or from a 
manager's perspective); thus, simple and well-understood is far better 
than precise and complicated. 

* Do not over-metricate. A few effective measures are normally 
sufficient. 

* 

* 

* 

* 
* 

* 

* 

are: 

* 

Ensure that the measures are owned by the development projects (ie the 
problem owners). This re-emphasises the prime purpose of measurement 
being to manage corrective action when problems are identified. 
Establish the measurements and targets before implementation. Never 
compromise on their achievement. 
Carry out regular reviews of the effectiveness of a measurement with 
respect to demonstrating delivered quality. 
Almost any (intelligent) measure is better than no measure. 
All measurements are relative. Keep consistency in measures between 
versions of the software . 
Avoid comparison with different types of measurements in order to 
determine quality. A mistake often made is to attempt to measure 
against "industry norms". In most cases , there are no such things! 
Different measurements will be required a t different phases of the 
development process to determine the qual i ty of the different quality 
attributes. 

Measures that are most effective in the VME development environment 

Software error detection rates per development phase (eg design, code, 



www.manaraa.com

224 

test,etc). If the development phase covers a long period, the rates 
should be measured at regular intervals throughout the process (eg 
weekly or monthly measures). 

* Software system break rates. The long-term establishment of this 
measure means that it is well understood and long term comparisons can 
be made between different versions of the product. 

Data Collection 
Where possible, data collection should be integrated into the development 
process and tools should be provided for their collection and analysis. 
However, significant quality improvement can be achieved using simple 
manual methods of data collection. The key to successful data collection is 
to establish a clear objective for the measurement and to seek commitment 
from the development teams to gather the information. Unless there are 
clear benefits to the development process, any data collected will be of 
poor quality and the collection process will deteriorate. Periodic review 
of the data and feedback to the "collectors" is essential . 

If an automatic data collection process can be established, additional 
benefits arise. The development of analysis tools allows projects to use 
the information in costs models and for verifying prediction models. 

TOOLS AND TECHNIQUES 

When considering any tool kit, the tools in it must complement each other 
and the selection of any tool or method will depend upon a number of 
factors. All tools and methods should be integrated into a coherent 
development route; often, it is not possible to attribute the success of a 
project to one particular technique. 

VME has traditionally used a number of proprietary automated tools in 
the development process; particularly in the areas of configuration 
management and the control of customer queries, product modification and 
system construction. 

Other key tools and methods used in the VME development route are 
described below: 

Basic Software Architecture and Design Features 
Structured design techniques and basic architectural features need to be 
established at an early stage to ensure that problems can be easily 
identified and that the faulty component can be isolated and the underlying 
faults detected and, hence, corrected. 

The VME system is divided into functional subsystems which comprise a 
set of code and data modules. The subsystems take advantage of basic 
hardware features which provide facilities for having separate code and 
data modules and for the protection and security of data by preventing 
illegal access (4). The system knowledge required by a subsystem is 
restricted to a formally controlled set of interfaces to other subsystems. 

Fault tolerance is integrated into the design of the system by the 
establishment of specific error management subsystems which are protected 
from corruption by the modules which they manage. 

Development Techniques 
Significant quality improvements will be achieved by the careful selection 
of techniques used during software development which will help to prevent 
errors or to remove them effectively. For VME, the most significant 
techniques are: 



www.manaraa.com

225 

* Use of a high-level language (known as S3) which incorporates basic 
validation facilities which will prevent certain classes of errors 
occurring in the source code. 

* Use of a low-level design language (known as SDL) which is an 
algorithmic language providing for the localisation of data structures 
and managing the control of the links and consistency checks between 
modules. 

* The establishment of an automatic set of tools to support development. 
For VME, a system has been established known as CADES (Computer Aided 
Design and Evaluation System) which supports SDL and provides rigorous 
configuration management of the software modules. 

* The use of tracing and journal ising techniques to provide an audit 
trail to assist the diagnosis of problems. 

Standards 
The use of acceptable standards allows for a common understanding of 
design, code and processes and has dual benefit to software development. 
Firstly, they prevent the introduction of a lot of errors and secondly, if 
errors do occur, they allow the faults to be detected more readily. For 
example, if a peer group all use a common standard, it may be more 
effective for the group to investigate and resolve a problem rather than 
leaving it to the original coder. 

Formal languages are not used for high-level design but a well
structured set of design documents which conform to a set of standards and 
provide a clear mapping between the control documents can be very 
effective. Control documents managed in this way by VME are:-

Market requirements 
Specification 
High-level design 
Low-level design 
Code narrative 

Indeed, one of the arguments against introducing formal design 
languages is that the state of the art at present only provides for 
improving a few of the control documents whereas it is the integrity of the 
design throughout the whole of the development route that is important. 

Considerable effort has been put into the establishment of external 
standards. For VME, the policy is to converge to the IEEE standards which 
allows the development route to benefit from external research and allows 
new recruits to relate their experiences more readily to VME. 

Organisation 
Management of processes is more effective if the organisation is made to 
fit the chosen development route and that clear responsibilities are 
established within the projects. One should not be afraid to experiment 
with organisational changes as a means of improving quality but this is one 
area where "what is good for the goose is good for the gander" may prove to 
be disastrously wrong. It is important that one recognises the psychology 
and culture of the teams before experimenting with organisational changes 
but the results can be very rewarding if an organisation is structured 
sensibly. The experiences of specific organisations within VME are as 
follows: 



www.manaraa.com

* 

* 

226 

Design authority - the design integrity within VME has been maintained 
by having an effective designer career structure which allows 
individuals to progress through the ranks to senior design positions. 
A design authority outside of the jurisdiction of the development 
projects has been established for VME since its inception. This 
authority is responsible for the VME architecture and for ensuring 
that design meets market requirements. Most of the individuals within 
the design authority have progressed from being low-level designers 
and implementors of the VME subsystems. 

Test authority - this is one area where there has been a lot of 
experiments on finding the best organisation for testing with varied 
degrees of success and failure. (see section on "unit test" later). 

Testing Tools and Techniques 
If an error is detected in a released version of the software, it may be 
fixed by the delivery of a code patch to the site which has encountered the 
problem. At the same time, the source of the code is amended with an 
architecturally acceptable solution for inclusion in the next release of 
the software. 

For each incremental release of VME, specific emphasis is placed on 
non-regression testing to ensure that 

* facilities released in earlier versions continue to work in each new 
version of the software 

* problems fixed in the maintenance process by emergency patches are 
cleared permanently in the source code 

The list of techniques described below apply both to new code testing 
and to non-regression testing. Because of the long life of VME development, 
not all code will have been subjected to all the techniques. It should be 
recognised that only a small percentage of code is changed with each 
incremental release and so each release has a legacy of extant undetected 
errors in the old code . Thus, an effective feedback machanism from the 
maintenance process is necessary to improve the quality of such code. 

Design Reviews : Design reviews allow a peer assessment of whether a 
design meets a set of requirements. Such requirements are often not 
explicitly stated and the success of a design review is dependent upon the 
experience of the staff who take part. There is unlikely to be training in 
a design review process. 

Design reviews have traditionally been an effective way of eliminating 
problems early in the development route. Acceptable quality control system 
standards demand a degree of formality in design reviews requiring minuted 
evidence together with an audit trail of the results of decisions made at 
such reviews. 

Inspections : Formal Inspection is a technique which is aimed at 
finding errors in a document by comparing it with some higher level 
document. The technique was pioneered by Michael Fagan of IBM in the 1970s 
and the process has become known as "Fagan Inspections" [31. 

For the technique to be most effective, there are two basic rules 
which must be satisfied : 

* There must be a formal documentation structure which eases the mapping 
between the control documents for each of the phases of the 



www.manaraa.com

227 

development route 

* The procedural rules must be rigorously followed . It is very easy for 
a group of designers of high intellect to stray from the "boring" 
rules to the more interesting design debates but such indiscipline can 
ruin an inspection and jeopardise the quality of the product. 

The VME experience of inspections began in about 1980 when a pilot 
study was carried out on a few subsystems to inspect code against the low
level design. This study demonstrated that inspections could eliminate 50% 
of coding errors before the test phase. However, over time, the 
effectiveness of code inspections has reduced. There are three reasons for 
this: 

* 

* 

* 

Programmers get smarterl The inspection process allows programmers to 
identify classes of errors which can be prevented before code reaches 
the inspection stage by tightening up on the code standards. 

Rigour in following the processes decays with time . Continuous review 
of the effectiveness of the process is carried out through measurement 
and feedback. 

Lack of adequate training. The lack of training is also a reason for a 
breakdown in following the discipline of the process. All individuals 
involved in inspections should be formally trained in both theory and 
practice. 

Almost "anything" can be inspected . The VME experience has been to 
extend inspections to the organisational interfaces where they are 
considered to be most effective. Specifically, inspecting specifications 
against market requirements brings about major improvements. Another area 
where inspections are of major benefit is by checking test cases against 
the design of the code. 

Note that inspections are not a substitute for design reviews. Their 
purposes are totally different; inspections detect errors between two sets 
of documents whereas design reviews check out the integrity and validity of 
a design. 

Unit Test: Unit test is defined to be a set of tests designed to find 
errors in a component (unit) of a system. For VME, the unit is a set of 
modules which are designed to meet a specific functional requirement. These 
modules are normally contained within a subsystem. Unit testing is usually 
a debugging activity. 

The most important aspect of unit testing is that it is treated as 
seriously as software production. Tools and methods used for the design and 
development of test cases must be of an acceptable standard, equivalent to 
that of the tools and methods used for software development. 

Unit test cases are normally developed from an intimate understanding 
of the design of the software and the y are usually considered as "white 
box" tests . Some time ago, VME carried out an experiment to have separate 
organisations responsible for code production and unit test. The objective 
of the experiment was to ensure that testing was not sacrificed in order to 
maintain schedules . The results of the experiment were mixed: 

* The objective as stated was met and one of the results of the 
experiment was the introduction of more formal testing techniques. 



www.manaraa.com

228 

* The effectiveness of the unit testing was reduced. This was due in 
part to the split responsibility which caused a degree of conflict and 
in part to the need to transfer the design experience to the tester. 

The outcome of the experiment was to transfer the unit testing 
responsibility back to the development projects but to retain the more 
formal testing techniques which are checked for conformance by the quality 
assurance processes. 

Some consideration has been given to the use of structured testing 
techniques for defining test cases but these have had limited success in 
improving the effectiveness of testing. The most important factors which 
produce effective unit tests are : 

* 

* 

* 

Acceptable standards for designing and producing test cases. The 
discipline of documenting test schedules and retaining test results 
for audit certainly focuses the mind! 

Intimate knowledge of the design of the subsystem and its interfaces 
under test (gained by experience) 

Inspections of test schedules against design. 

One technique that is extensively used for unit testing is to provide 
a test bed on which to run the test cases. A test bed is a tool which 
simulates the target system environment for the subsystem. The main 
benefits of a test bed are: 

* The unit tester does not have to be concerned with the way the rest of 
the system works. The test bed can be set up so that no errors can 
occur except in the software under test. 

* The tests can be run in a more efficient manner as resources required 
by other parts of the system are not needed in a simulated 
environment. 

* Additional diagnostic aids can be built into the test bed. 

Within VME, test beds are produced locally within the development 
projects for particular subsystems. Their most effective use has been with 
communications software which has benefited enormously from their 
introduction. It is possible to generate more general test beds for a 
number of different projects but some of the advantages may be less 
effective as a result. The cost of producing test beds should not be 
underestimated; the investment in the design and development of a test bed 
may be as high as that needed to initially develop the software but the 
returns on such investment can be very worthwhile for software which is 
enhanced and issued frequently. 

System Test: System testing differs from unit testing in that it uses 
a "black box" approach by designing test cases from a product specification 
without the need to have an intimate understanding of the design. For VME, 
the experience is such that it is best to have a separate system test group 
from the development projects which takes unit-tested components and 
integrates them into a target system version. 

Some of the techniques for system test are the same as for unit test. 
viz 



www.manaraa.com

229 

* Acceptable standards for designing and producing test cases 
* Programmer experience 
* Inspection of test cases against specification 

The system testing activities carried out by VME serve three distinct 
purposes: 

* 
* 

* 

Debugging of new software (unit testing also serves this purpose) 
Verification that the system is non-regressive against earlier 
versions 
Verification that the new functionality works in the target system 

Because of the nature of VME incremental releases, great emphasis is 
placed on ensuring that the versions are non-regressive against earlier 
versions. Two techniques are employed to improve the effectiveness of non
regression testing: 

* Automation of checking the results of test cases. 

* 

When a test case is generated, its results are saved and subsequent 
runs will compare their results with those stored. Provided that there 
is a match of results, a "results file" is updated to indicate that 
the test has succeeded. If there is no match, diagnostics are 
generated to allow analysis to take place to determine the cause of 
the problem. Standard subroutines are called by the test cases to 
allow this process to be effective. In this way, the output only needs 
to be examined for failed tests and many hundreds of test cases can be 
run with minimal effort. 

Enhancement of the test cases through the use of standards. 

As new test cases are generated (as a result of new facilities being 
incorporated into the system or as a result of a problem being 
detected after release and a source clearance being generated), they 
need to be captured in the "regression test suite". This is achieved 
by imposing standards on the way that test cases are generated. 

Note that system testing is designed to validate all attributes of a 
system such as product installation, performance, maintainability, etc. 
Different techniques are used for specific attributes; for example, 
benchmarking is used extensively to demonstrate system performance. 

System Trial: The nature and usage of the VME Operating System 
software is such that it needs to support a very large number of software 
and hardware configurations . The parameters that determine these 
configurations are: 

* 
* 
* 
* 
* 

the combinations of hardware and software components delivered by IeL 
additional components supplied by third parties 
customers own developments and applications 
user data and filestore 
time 

* user literacy 
* site procedures (eg house-keeping style) 
* combinations of work profiles 

The challenge is to establish techniques which reduce the risks of 



www.manaraa.com

230 

errors caused by such a multitude of different configurations. The 
techniques employed by VME are as follows: 

* 

* 
* 

Tight control of interfaces through a well-defined software 
architecture 
effective training in the use of the system 
System trials on internal systems to provide a degree of "random" 
system testing. 

VME versions are produced by creating a series of internal increments. 
These increments are installed on a number of internal (non-customer) 
services to provide random system test. Specific services are:-

1. The VME development service. As a matter of policy, all VME increments 
are installed on the service which is used for the production of the 
VME code target ted for inclusion in subsequent increments. 

2. Other ICL development services. 

3. System Validation Services. Collaboration with major customers allows 
the generation of services which simulate these customers' anticipated 
usage. The customers provide workloads and databases which are used by 
ICL to destructively test the system by running it at its limits. 
Secondment of customer staff provides a degree of independence in 
designing suitable tests. 

Concluding Remarks: The following points summarise the experiences of 
using problem identification and correction techniques for testing very 
large incrementally developed software systems: 

* 

* 

* 

Select the right tools for the job and ensure that the tools in the 
set are complementary to each other. 

Invest in the development of testing techniques. Effective testing 
cannot be done on the cheap. 

Programmer experience and standards are the most effective means of 
improving the effectiveness of testing. 

THE CASE STUDY 

In the early 1980's, VME was a stable product, performing in line with the 
original design standards set for it and it had been available since the 
mid 1970's. A new series of processors, known as Series 39, was being 
developed to exploit the latest chip and fibre optic technologies and the 
corporate strategy was to port VME to the new range. 

At the same time market requirements for operating systems were 
changing. Customers were demanding: 

* increased reliability as businesses became more and more dependent 
upon computers 

* more rapid resolution of problems to eliminate or minimise the impact 
of computer defects upon business performance 

* improved facilities as the demands upon computer systems and the range 
of applications software in use became more sophisticated 



www.manaraa.com

231 

The task facing ICL's software development engineers was therefore 
twofold: 

* firstly, to modify VME to run on Series 39 so that existing users 
could purchase the new processor without having to change any of the 
existing applications programs; 

* secondly, to build improvements into the modifications that would meet 
the more stringent requirements being demanded by customers and 
eliminate or reduce perceived current deficiencies. 

During the 1970's, the VME development route had evolved into an 
effective tool kit for the production of software to meet the requirements 
of the time. However, the tools alone were no longer capable of meeting the 
demands of the 1980's and a new look at the processes and the management of 
them was required. 

Initial Planning 
Having identified the changes in requirement, the approach was to: 

* size the problem 
* identify the changes in the management and development processes 

needed to secure improvements 
* establish objective measures to track progress 
* identify, define and implement any necessary training requirements 
* incorporate the lessons learned into standard working practice 

The First Steps 
An action plan was formulated to introduce both tactical and strategic 
changes to the development processes, with increasing emphasis on 
management control using quality techniques. 

Gathering Pace 
In parallel with the Action Plan, the investment approval criteria were 
modified to make quality standards an investment justification in their own 
right. 

Investing in Quality: An explicit Quality Investment Case was 
formulated. Activities were concentrated in four main areas: 

* The existing Software Quality Manual was completely re-worked. A 
working party was established to undertake this task, with 
representatives from each of the development teams. In addition to 
ensuring that proposed practices were workable and acceptable to each 
team, the composition of the working party ensured that ownership of 
the processes was held by those accountable for their implementation . 

* A programme was put in place to accelerate the rate at which the 
design changes were made and thus reduce the number of patches 
awaiting clearance. At the same time, procedures were improved to 
guarantee that changes in the operating system design were made 
concurrently with the implementation of the temporary on-site 
solution. 

* A more formal process of defect analysis was introduced to determine 
the underlying causes of product error detected by the customer. Early 
analyses identified a number of defects in the processes for 



www.manaraa.com

* 

232 

generating and testing on-site solutions (patches) to specific 
customer problems. A number of improvements to these processes were 
introduced to eliminate the defects. In the first year, the number of 
patches that failed to provide a solution first time decreased by a 
factor of four. 

A field reliability improvement programme was introduced to: ensure 
accurate and timely feedback to the development teams on on-site 
performance; set improvement targets; and to take any action necessary 
to achieve the performance improvement targets set . 

Quality Training: To reinforce the product improvement programme, a 
complementary process of quality education was introduced. This was a 
company wide programme using a training package tailored by ICL for local 
needs. 

Effectiveness Measures: In parallel with the establishment of these 
initiatives, a series of new or revised measurements were introduced to 
track progress. Eight key complementary measures were used, based on 
customer performance priorities: 

* "Meantime Between Software Breaks (MTBSWB)" (Three measures for 
different ranges of processors). The elapsed calendar time between one 
fault occurring and the next 

* "Bug Backlog". The total number of customer-reported faults that 
remain unanswered 

* "Incident Rate". The total number of customer-reported faults per unit 
time 

* "Bug Factor". A measure of the responsiveness to customer-reported 
faults based on the degree of urgency indicated by the customer and 
the length of time taken to respond 

* "Repair Quality". The percentage of temporary solutions (patches) 
supplied to customers that work first time. 

* "Repair Count". The number of repairs for new product errors reported 
since the previous release of the product. 

Where applicable, each key measure was underpinned by a subset of 
measures appropriate to the responsibilities of individual development 
teams. 

Progress against the measures can be summarised by the chart below . 
Each parameter is compared against a datum measure of 100 at the start of 
1986 and shows the values at the end of each year (cf FT index) . 



www.manaraa.com

233 

TABLE 1 
Progress against quality measures - 1986 to 1988 

Measure 1986 1986 1987 1988 
start end end end 

MTBSWB 2900 100 225 887 2005 
systems 

MTBSWB Small 100 203 1230 3530 
series 39 

MTBSWB Large 100 752 4527 13853 
series 39 

Bug Backlog 100 113 553 818 

Incident Rate 100 118 184 204 

Bug Factor 100 123 296 444 

Repair Quality 100 375 375 1000 

Repair Count 100 439 659 989 

Management Review: The management review processes were revisited and 
refined to give focus to the quality initiatives. 

* 

* 

* 

line management were involved at all stages of the process and were 
held accountable for successful implementation 

targets were established for each unit 

progress against both the key measures and unit targets was subject to 
regular management review at all levels in the company . 

Maintaining Momentum 
The initial successes were encouraging. Good progress had been made against 
the objectives set: field reliability had improved significantly; and the 
demand for on-site support had not increased in spite of a significant 
growth in the number of VME customers. 

Sustaining Performance Improvement: The next challenge was to build on 
this success. New initiatives were taken to further improve customer 
support. Under the code-name PENTAGON, the overall objectives were to : 

* 
* 

reduce the backlog of unanswered customer-reported faults by 60%. 
reduce the period a fault remained unresolved. 



www.manaraa.com

234 

* reduce the average bug factor per customer-reported fault by 60%. 

* 
* 
* 

The following results were achieved: 

the number of unanswered customer-reported faults reduced by 80%. 
there were no unresolved faults older than the target period. 
the average bug factor per unanswered customer-reported fault reduced 
by 65%. 

Education and Awareness: The Quality Education System, was further 
extended to include training for all employees. The course introduced the 
concepts of the Quality Improvement Process. It was delivered in ten two
hour modules to classes of fifteen students over an elapsed period of ten 
weeks per class. 

In addition, a series of seminars and workshops on measurement 
techniques were given by a leading expert in the field of software 
engineering. The content was specifically tailored to the needs of software 
development and built upon the measurement processes introduced as part of 
the quality improvement process. 

Consolidation 
Today, the VME improvement programme has been fully integrated into the 
Quality Improvement Process. The management of its future development has 
been built into the standard quality processes that are adopted throughout 
Mainframe Systems Division and the rest of ICL. All the key measures and 
targets set are still in place, with progressively more ambitious goals 
being set to reflect competitive levels of performance. 

In addition, the mechanisms for identifying and resolving "roadblocks" 
to further improvement were progressively being implemented. A formal error 
identification and correction system was introduced, enabling development 
teams to initiate "Corrective Action Requests", a means of reporting 
actions needed that would improve process performance. Examples of the 
results achieved include: 

* the introduction of a computer-based system to hold the quality 
control procedures. The benefits of the system are:-

- immediate access by all development staff 
latest information available in a more 
timely manner 

- ability to locate procedures easily and 
effectively 

* a revision of the planning procedures and tools. Better procedures 
have been introduced to improve the quality of plans; standard 
checklists are included to ensure that quality requirements are met; 
more accurate cost predictions can be made through the use of standard 
prediction models; measurements are incorporated to monitor progress; 
and computer-based tools have been introduced to improve the accuracy 
and efficiency of plans. 

Summary 
The improvements as a result of implementing the Quality Improvement 
Process can be summarised by the following measurements: 

* A 40-fold improvement in the reliability as measured by the 
Meantime Between Software Breaks. 



www.manaraa.com

235 

* A four-fold reduction in customer reported defects against a 
background of an increasing customer base. 

* A four-fold improvement in the response time to customer reported 
defects. 

CONCLUSIONS 

Initially, the need for improving the quality of VME arose from the 
business requirements to allow ICL to deliver its new range of processors. 
Whilst the intellectual capability to solve quality problems had always 
existed, the focus on Quality management at all levels has ensured that 
quality will forever remain in the forefront of all the development 
activities. It has allowed the organisation to achieve levels of quality 
which, hitherto, would have been considered impossible for a project as 
complex and as large as a general purpose operating system. 

Software engineers and managers now believe that they can ultimately 
produce error-free products which fully conform to customer requirements. 

The processes established have provided a platform for continued 
improvement of the quality and customer satisfaction levels. 

A Software Factory Strategy has evolved which will ensure that VME 
continues to be developed using the most advanced and effective state of 
the art quality oriented software engineering tools and methods. The 
objective of the strategy is to continue to improve both productivity and 
quality levels through a continuous programme of improvement in three key 
areas: 

* 

* 

* 

Awareness and Understanding: increased use of measurement and process 
modelling using the most advanced tools 

Phase Automation : use of improved tools for all processes 

Process Integration: computerisation of the process model to guarantee 
the integrity of the development route and to control its maintenance, 
evolution and improvement 

REFERENCES 

1. Basili, V.R. and Selby, R.W., Four Applications of a Software Data 
Collection and Analysis Methodology., Software System Design Methods., 
NATO ASI Series Volume F22 

2. Gilb, T., Design by Objectives., Gilb-DBO-84 

3. Fagan, M.E., Design and Code Inspections to Reduce Errors in Program 
Development, IBM Systems Journal, Vol. 15, No.3, 1976 

4. Parker, T.A., Trust in a Large General Purpose Operating System., 
Procedings of CSR Sixth Annual Conference 



www.manaraa.com

11 
STlUClURING TlUST IN A IAlGE GEEERU.. PURla)E OPEH\TING SYSTEM 

T A PAR<ER 
PRINCIPAL SEaJRITY a:NSULTANT 

I<L DEFENCE SYSTEM3, ESKDALE roAD, 
WINNEI5H, \'lX<INGHAM, BER<S ffill 5Tr 

This paper describes the approach taken in ICL to 
ameliorate the problem of evaluating the security 
of a large c.perating system in Which the number 
of Trusted Computing Base and Trusted Process 
code procedures is large enough to make 
exhaustive detailed scrutinisatioo more than 
exhausting. The approach is applicable to any 
structured large general purpose system that 
enables a convential TCB/ Trusted Process 
architecture to be implemented, though it is 
described in the paper with particular reference 
to I<L's vm operating system. 

INTRDJcrICN 

In a large and flexible general purpose system like I<L's Virtual 
Machine Environment Operating System (VME) [1] [2] the size of the 
Trusted Computing Base (TCB) and Trusted Processes is also large, and it 
is an ooerous task to analyse fully all of the security properties of 
all of the code that needs some form of trust. This paper describes hCM 
the task of analysing this code is made as easy as possible. 

The ideas described here can be applied to any large general purpose 
operating system aiming at a security quality equivalent to Bl or B2 00 

the ])d) scale [3], provided it has a structure that enables the 
different respoosibilities of the different parts of the system to be 
clearly separated. The structure required is the conventional ooe of 
protected TCB policing all accesses to protected objects from multiple 
distinguishable processes as illustrated in Figure 1. 

236 



www.manaraa.com

Untrusted 
Afplication 

Process 

237 

Untrusted ~ 
Afplication Trusted 

Process Process 
I I 

I 
ACCESS REQUESTS 

\/ 
I 
\I \I 

TCB 

\'/ 

Protected Objects 

Figure 1. Ccnventional TCB Architecture - An Illustration 

Even in level B3 or higher security systems the Trusted Process problem 
remains a thorny one, since formal proofs of trusted process security 
properties are notoriously difficult, and exhaustive scrutinisation is 
critically iI!pOrtant; the fine grain attributioo of trust described 
below would therefore be of value in iIlq:>roving its effectiveness. 

The approach used is based on an extensioo of the siIlq:>le white/black 
distinctions of 'trusted' represented by the TCB and Trusted 
Processes, and 'untrusted' - represented by all other ccx1e. In the VME 
system a graded series of categories and types of trust are identified; 
this enables the task of examining the ccx1e in each ccx1e procedure to be 
confined to ensuring that the particular trust invested in that 
procSlure is not betrayed. It will be seen later than this can often 
greatly siIlq:>lify the examination process. 

In the \1M!: system the various trusts allocated to non-TCB cexie are 
formalised by markings, and each VME ccx1e library is marked with the 
type of trust that is invested in the mo:iules (collections of 
procedures) in that library. These marks are used by the TCB ccx1e to 
allCIN or disallCIN the use of certain functions, each functioo 
representing either the breaking of a mandatory security policy rule, or 
the executioo of some other security related actioo. Trust can be 
affected by the current process state; for exaIlq:>le a particular trust is 
lost if any ccx1e not having that trust is loaded into the executioo 
environment. Other factors can also affect trust, including the 
identity of the end user 00 whose behalf the process is executing; these 
are described in more detail in the appropriate section. 



www.manaraa.com

238 

In VME, both security narkings and integrity narkings are supported as 
labels whidl control the operaticn of a nandatory security policy, but a 
sharp distinction must be drawn between high integrity or high security 
processes and trusted processes. The former cbe:! the rules of the 
nandatory policy, the latter can nake them and/or bre:lk them, but are 
trusted not to do so in a way that violates the true security of the 
system. 

On a certified system, trust is not lightly given to a piece of code 
since any level of trust denands that the code be scrutinized in some 
way. If certification is not required (for example in a commercial 
system) or if further bespoke certificaticn is to be undertaken, trust 
can be used lIOre freely to extend the capabilities of installation 
written applicaticn code. Indeed, bespoke additional certificaticn is 
only fe:lsible if a proper trust identification mechanism is in place, 
supported qy run-time TCB controls. 

First however we briefly consider the TCB itself, and the next section 
describes how code within the TCB can be categorised to separate out the 
parts that are active in and therefore critical to security, from those 
parts that are passive and therefore less critical. 'Ibis is con
ventional design teclmology required qy the 82 criteria, but it is 
useful to compare arrl contrast with the trusted process structuring 
described in the rest of the paper. In these later sections, the 
different degrees of trust invested in the various trusted processes are 
described and justified. With one or two notable excepticns (detailed 
in a later secticn) these types of trust differ in nature from the 
distinctions within the TCB, since the trusted processes are policed by 
the TCB to execute within the confines of their allocated type of 
trust. 



www.manaraa.com

239 

'!be Trusted CaIplting Base 

The machine architecture within which VME executes has a hierarChic ring 
protecticn structure consisting of 16 Rings [41. The vr.E TCB is define:1 
to be all of the code running at or below Ring 5. In VME, this code is 
not one lOClI'lolithic lullp, but is highly structure:1 into subsystens whose 
interfaces - with e3.ch other, and with non-'lU3 code - are tightly 
controlle:1 by moons of design rules supporte:1 by a set of automated 
development tools known collectively as CADES [51. 'these are further 
supporte:1 at run time by hardware protection medhanisms. EaCh subsystem 
can be pictured as shown below: 

Interfaces to service 
requests from other 
subsystems 

Internal 
interface 

TCB interfaces 
(servicing requests 
from outside the TCB) 

Function 2. 

Q/ 
V" ····0 

Interfaces 
with other 
subsystems 
in the same 
protection 

Systen Call interfaces 
to other more privileged 
subsystems 

Figure 2. Structure of a VME TCB Subsystem 



www.manaraa.com

240 

Figure 2 illustrates the following important points: 

* Data is cootrollro entirely by the subsystem to which it belongs. 
It is not accessro by other subsystem code except via procroures in 
the owning subsystem, and then ooly rarely, since each subsystem is 
data driven by its C1NI1 data. 

* The internal rulti-ring structure of the TCB further rrouces the 
potential for ooe subsystem to corrupt the data of another. Each 
of the rings is protectro from corruption from code executing in 
less privilegro rings by run-time checks supportro by basic 
hardware mechanisms. 

* Subsystems are themselves dividro into functionally orientatro 
compcnents. For example the block level file management subsystem 
divides into seven different management functions, each having its 
own distinct data structures. Further sub divisions occur within 
each function, resulting in a hierarchic nndular design, all 
nndellro in the ~ES system. 

* A subsystem's interfaces with the outside world world can be 
categorisro as shown in Figure 2. All of these interfaces are 
definro by database cross-reference listings. The procErlures which 
support calls from outside the TCB are further identifiro by 
entries in the Steering File, a data file usErl by the System Load 
subsystem to establish the cooditions necessary for calls from 
outside the TCB to succero. Thus this file is by its very nature a 
precise definitioo of the run-time TCB interfaces: if an entry is 
not present, the corresponding interface is unavailable. 
FurtherlOC>re, in the same way, interfaces between the protectioo 
rings within the TCB are also policErl by the Steering File. 



www.manaraa.com

241 

Classes of Trn Software 

The structured nature of the Trn allows us to define a clear 
partitioniBJ of the security responsibilities of its code procedures. 
This partitioning sinplifies the scrutinisation process, by E!1abling it 
to concentrate only 00 those security attributes that are required for 
a procedure to fulfil its specific security responsibilites in the 
TCB. 

The classes are shown below: 

1. Procedures that are never executed in the version of the system 
being offered for certificatioo. Examples of these might be 
procedures supporting the use of particular peripheral devices, or 
procedures supporting functions that are not to supporting functions 
that are not to be present in the evaluated system. 

2. Procedures internal to the TCB that have no responsibility for nor 
influence 00 the handling of the rodel oojects policed by the 
Mandatory Policy. Such procedures have a responsibility for not 
corrupting data Which directs other procedures that have greater 
security responsibility. Denial of service should also be 
considered. An example of this kind of procedure might be one 
concerned with low level process scheduling. 

3. Procedures internal to the TCB which either support accesses to the 
oojects appearing in the security rodel or provide the 
infrastructure by means of which the oojects themselves are defined 
and supported. These procedures must either be functionally 
correct, or any functional deficiences should not create a security 
compromise. 

4. Procedures responsible for security checks and the inplementation of 
security related functicns. These procedures form a TCB subsystem 
of their a.m; we shall call it the Security Handler subsystem. The 
procedures of this subsystem are critical to the security of the 
system and will be required to pass the most stringent inspection. 

5. Audit procedures which, although candidates for the previous 
section, w:lUld not directly cause a first order security violaticn 
if they were to fail functionally. 

6. Procedures that can be called from outside the TCB. They must be 
resistant to malicious callers who may pass invalid parameter values 
or make calls in unusual circumstances with unusual parameter 
values. These procedures inplement the TCB interface, and where 
appropriate should perform security checks by calling the Security 
Handler sub-system of the TCB. Four different subtypes can be 
identified; each requires a different evaluation awroach: 



www.manaraa.com

242 

* The interface relates to none of the actions definoo in the 
security lOCldel (e.g. a procooure whidl replies to requests for 
current date and time). 

* The interface is to a procooure which does its job within the 
context of a previously establishoo access capability (e.g. block 
transfers from an already authorisoo filestore file.) 

* The interface maps on to a subject-access-d:>ject action of the 
lOCldel (e.g. a procooure which deletes a file). 

* The interface supports a trustoo function of some kind, reqUlnng 
the resultant act ion to be Checkoo (via Secur i ty Handler), and 
auditoo. 

TRJSTED PRXESSES 

Many of the standard functions of VME, requiroo in all'OClSt all processes 
are inplementoo via system ccrle which runs at a less privilegoo Ring 
level than the Tal. Examples of these functions can be found in: 

- The System Control language Subsystem 
- The Record Management Subsystem 
- Parts of File Controller above Ring 5 
- Parts of Name Handler above Ring 5. 

In the great majority of processes, this ccrle requires no special trust 
to operate successfully (ie. it obeys the security policy rules 
imposoo by the TCB) and no evaluation of the ccrle's security properties 
would on this basis be requiroo. There is hCMever a small number of 
special kinds of process which engage in system or security relatoo 
activitiesr examples are the process whidl handles user authentication, 
the process whiCh spools output, and high level schoouler processes. 
Sudl processes require the functionality offeroo by this non-Tal cole, 
but also require to be trustworthy in some respect because of the 
nature of the jd:> they are doing: they either break the rules in some 
way or are directly responsible for some security relatoo activity. 
Sudl processes are knCllln as "Trustoo Processes" 

The concept of 'breaking a security rule' neErls to be clearly 
understooJ in the context of an operating system's mandatory security 
policy. The neoo to break such rules can arise from the way in which 
real world security requirements are inperfectly and over-cautiously 
reflectoo in the rules applioo by the Tal. The major 'problem' rule is 
the *-property of Bell and laPadula [6] whidl reflects the real world 
requirement that data from high security sources should not be output 



www.manaraa.com

243 

to low security sinks. Because the TCB is insufficiently sophisticated 
to monitor all data flows that might take place within the non-TCB code 
that it is policing, it irrposes the crude but safe rule that no low 
security sinks (output channels) can be available to a process-while 
high security sources of data are present . This rule is applied 
because tmevaluated code cannot be trusted not to cause actual data 
flows which \<K>uld violate the real world requirement. A Trusted 
Process on the other hand could be permitted to violate the TCB's rule 
provided that it was scrutinised to ensure that no actual data flow 
leakages take place. 

Sane of the code executing in a Trusted Process is clearly special to 
the kind of process it is and the jcb it is doing, and will never be 
executed (nor available) in normal user processes. For example the 
code directly concerned with the user authentication logic will appear 
only in the process(es) responsible for user authentication. This is 
in contrast to the code responsible for breaking down hierarchic 
cbject names into their elementary C<JIllXlI1ents for example, which is 
part of a service function used in every process. 

Suppose the system were simply to treat all such code as "trusted" in 
the blanket sense that the TCB will allow it to break any of the rules 
whenever it wishes, or perform any security related operations it 
wishes, in the knowledge that the code would not take advantage of this 
freedom; such an approach would pose a heavy \<K>rkload on the evaluators 
of the system since a potentially large amount of code is involved, and 
it must all be inspected in great detail since it has been granted wide 
powers. 

The VME approach follows the principle of least privilege, in the sense 
that each individual trusted execution environment is allocated 
security privileges which are precisely enough for it to do its job and 
no Il'Ore. This is done using the Vr-£ 'Trusts' system. 

CATEX;()RIES OF TRJSTED PR:lCESS 

The amount and nature of the trust required by the different Trusted 
Processes varies widely; different categories of trust can be defined 
and within these categories, types. 

The first category of Trusted Process consists of those that are a 
direct part of the mechanisms supporting or enforcing the security 
rules of the system. These Trusted Processes could usefully be thought 
of as agents of or extensions of the TCB and we shall call them 
'JX:B-Processes. For example the user authentication process is part of 
the security enforcement mechanism: it enforces the authentication 
rules. The trusted ftmctions of such a process cannot by their nature 



www.manaraa.com

244 

be policed by the T03 proper, the T03 has not been designed to 
understand user authenticatioo. This is not to say that some of the 
authentication logic does not run at or belCM Ring 5 - it does, but 
these routines are slaves to the contrOlling authenticatioo logic 
outside the TCB. 

The follCMing are examples of 'ItB-Processes in WoE: 

Login (authenticates end users) 

Spooler (labels output) 

Security (establishes the security parameters of the system, 
establishes user clearances and performs downgrade 
and upgrade cperations). 

Comms Network Controller (handles network connections) 

The second category of trusted process consists of those that have no 
direct concern with security but re:JUire to break the *-property rule 
in some way in order to do their job. Such processes must be trusted 
not to leak informatioo through the write-down channels that are nCM 
open to them. An example of such a trusted process is a SCheduler 
process, whiCh needs to acknCMledge receipt of requests fran processes 
using its services. In order to be able to receive requests from 
untrusted processes it needs to run at a high security level (otherwise 
the sender might fail with a *-property violation); this means that 
return acknCMledgements will usually violate the *-property. No other 
trusts are required and the *-property is to be permitted to be brok91 
in this manner only. In some trusted processes in this category the 
risk of accidental leakage is negligibly small but the trusted code 
must be evaluated to ensure that it does not maliciously cause 
deliberate leakage. The scheduler processes are a good exanple of 
this. 

There are other types of second category process in which the risk of 
accidental leakage is more significant because of the nature of the jcb 
that the trusted process performs. An example of this is the Filestore 
Management System (PM=» process, responsible for taking backup copies 
of files, and restoring them. FM5 works by merging the files to be 
backed up into one large file. During file restoration, this file is 
broken down into its conponent files, which may be of differing 
security classifications. The "combine and split" approa.Ch of FM5 is 
possible CI'lly if the *-property can be violated. If FM5 were to 
confuse the compon91t files a security leak might result. 

Sane 'ItB-processes may at times require also to break the *-property, 
and in this respect belong to both categories. Risk level distinctioos 
can also be drawn between the different T03 processes. 



www.manaraa.com

245 

T~RlHY ENTITIES 

So far trusts have been describe1 only in relation to software, their 
purpose being to define and control the parts of the system outside the 
TCB that require inspection l::rj the evaluators. '!his is the fundamental 
function of. the trusts approach, and controlle:l evaluation of the 
system critically depends on it. 

There are hOrlever three other kinds of entity to Which trusts can be 
applie:l: 

- Hunan users (represente:l l::rj \/ME usernames) 

- User terminals 

- Software environments 

When applie:l to these entities, ech trust can be viewe:l as a kind of 
security privilege, similar to a security clerance. Trusts when 
applie:l to users, relise in q>erating system terms the users' rel 
world security roles, roles which do not relate to clerances but to 
security responsibility. One might be the ability to downgrade the 
security classification of an cbject. A user's clerance determines 
the limits of any downgrade capability he may possess but does not 
determine Whether he possesses it or not. This will become clerer in 
the next section, Where some other trusts of this kind are describe1, 
but first we shall see hOrl the trusts associate:l wi th all of these 
entities are combine:l. 

Typically a human user will log in at a particular terminal and a 
process will be made available for his use. This process will have 
associate:l with it a certain basic software environment Which 
determines the facilities that can be made available in that process. 
In due course he may load software of his choosing, or it may be 
automatically loade:l for him to execute in that process. 

The number of trusts Which is finally associate:l with the user's 
proc~s is determine:l l::rj taking the gretest 10rler bound of the trusts 
associate:l with the four CClIlp)llents involve:l: the user, the terminal, 
the software environment, and any co1e subs6:Iuently loade:l. 
Untrustworthiness is contagious: it infects everything it touches. 



www.manaraa.com

246 

TYPES OF TRJST 

Examples of a few of the many different trusts understocxl by Vl>E' s TCB 
are given below. They are groupErl together under the t\'K) categories 
definErl earlier. 

First Category - Security RelatErl Functioos 

QiAN'GE-PASS\'l)R) 

Allows the process to Change personal security data such as the 
authenticatErl user's own password. 

Allows the process to check the password of any user. 

a::NNECI'-'ro-DEVlCE 

Allows the process to connect directly to a device such as a VlXJ, 
card reader or line printer. Having this trust allows direct 
outp.1t of information to an output device or direct interception 
of data fran an input device. 

OOK'-5UPERlJlSOR-TABLES 

Allows t.'1e process to ct>tain diagnostic dunps of various Operating 
System tables. 

Secood Category - Breaking the * Prc.perty 

BIOADCAST-MESSJ\GE 

Allows the process to broadcast a message to other, possibly lower 
security processes. This would normally only be given to a system 
process acting for an Operator. 

VOIlJ~-ACCESS-FOR-DISC-WRITE 

Allows the process to connect to a whole disc volume for WRITE 
access. This is neErlErl for initialising discs or to support their 
recovery from tape archives. 

WRITE-In'N 

Allows the process to break the general mandatory policy rule that 
does not permit high security information to be available while a 
process has a low security output channel open to it. 



www.manaraa.com

247 

TRJSTED PRXESS EVAIlJATICN 

In the preceding sectiens, using ~ as an exanple we have describe;i 
the basic principles tmderlying the ways in wnich trusts can be 
implementErl in an operating system. This sectien goes into a little 
IlOre detail, with the aim of showing how to idSltify the critical oode 
procedures invel vErl. 

In Vfo£ a p:lrticular oode procedure is deemed to possess a p:lrticular 
type of trust if it is loadErl frexn a oode library wniCh is labelled 
with that trust. In this respect the Protectien Ring in wnich the oode 
will run is irrelevant (as long as it is outside the TCB limit of Ring 
5). The critical factor is the library from wnich the oode has bee1 
loaded. 

The trusted libraries in early releases of the product are labelled 
with all of the trusts that the system supports, though later 
experiSlce of use of the system will enable a finer grain allocatien. 
A number of other libraries, in some cases very large ones indeed, are 
presSlt en ~ rut are not trusted in any way. In practice, the least 
privileged Protectien Ring in wniCh this oode would run would be Ring 
10, rut this is not significant. If it ran in Ring 6 it would gain no 
advantage frexn the point of view of the trusts system (or for that 
matter any mandatory policy centrols) . 

Together, the trustErl libraries contain a substantial amount of oode, 
all of wnich is requirErl in principle to be evaluatErl at least to a 
minimal extSlt. In the \1M!: system there are t~ main techniques that 
can be applied to maximise the aIlOUnt of oode that requires minimal 
scrutinisatien and minimise the allOunt that is requirErl to be analysed 
in great detail: 

Well Defined Executien 'lhreads 

Trusted rode can enly realise its trustworthiness if it excutes in a 
process wnidl is associatErl with a ~ software envirooment that also 
possesses the trust. On the versien of the system to be evaluated in 
the UK, the enly envircnments that possess any trust will be defined by 
ICL, and will inpose strict centrols over the level of functicnality 
supportErl by the processes running in them. This means that the 
execution p:lths through the oode loaded in such processes can in 
principle, though not necessarily very easily in practice, be 
determined by analysis. 

Consequently substantial parts of the oode in questien are never 
executErl in trusted Slvironments, although they might have bee1 loaded. 
This can exempt much of the oode presSlt in the trusted processes frexn 
detailed evaluaticn. Even when oode does execute, it will be 



www.manaraa.com

248 

constrained in the trust that it possesses by the clearances limits 
imposed by the E!1vironment in whim it runs. 

Nei ther is the co1e that is actually executed subject to any stress 
fran E!1d-users. An attacker wishing to break into the system by 
finding and exploiting functional weaknesses in trusted processes has a 
very limited range of interfaces at his disposal and can execute no 
co1e of his CMI1 to help him in his task since this would cause the 
process to lose its trusted status. Contrast this with the resiliE!1ce 
required of the TCB, which must be assumed to be subject to COIIplex 
code drivE!1 attack over a wide variety of the collplex interfaces it 
supports. 

Particularly illpOrtant in this context is the System Control Language 
(SeL) subsystem whim provides a rim and collplex language interface 
used by many processes including trusted ones, rut which executes 
outside the TCB. Because it is used in a number of trusted 
E!1vironments the SCL subsystem must be trusted. The VME design 
confines trusted processes to the use of only a very few of the 
possible SCL capabilities. This greatly sillplifies the analysis and 
test requiremE!1ts since use of other linguistic constructs will always 
be untrusted, and potentially malicious E!1d-users will be limited in 
the ways in whim SeL in trusted IOOde can be stressed. 

We have already said that it is only the code that is actually executed 
in the performance of the various functions that needs to be evaluated. 
Hcwever it is unrealistic to have units of trustworthiness smaller than 
a procedure, am if any co1e at all is executed within a procedure we 
should deem that procedure to be required to be evaluated as a whole. 

Procedures in the trusted paths will oftE!1 be quite general purpose, 
and often used in non-trusted E!1vironments with ech of these 
procedures having many external references to other procedures. The 
procedures which satisfy these externals, and the procedures that in 
tum satisfy their externals (am so on) form a tree of potentially 
executable trusted co1e that at first sight appears to get very bushy, 
but as the diagram belcw illustrates, there are two factors whim allcw 
us to prune the tree: 

- when Ring 5 or below is hit, we have reched the TCB 

- we only need to consider external references that are 
actually follcwed on the trusted paths. 



www.manaraa.com

etc. 

249 

Tea 
-------~RV 

[ tfl Not calla:1 en trusta:1 path 

[!] Needs to be evaluated 

(g] = TCB proca:1ure. 

Figure 3. A Trusted Execution Tree. 

In practice of course, the kind of tracing described here will be 
difficult to achieve, since actual execution paths can be distinguished 
from potential paths only by using intimate knowla:1ge of the functional 
properties of all of the code involved. Ccnstruction of the main tree 
is however greatly aided by tools which are available to trace external 
references from named procedures. 

Clearly Identifiable Trust Invocation Points 

When a Trusted Process wishes to invoke a trust, it must do so by 
making use of one of a nwnber of specific TCB interface procedures. It 
is this procedure which roth makes sure that the process possesses the 
necessary trust, and if necessary audits the fact of the trust's 
invocation. The CADES system under which VME is developed has built 
into it facilities to list all of the procedures which call a nominated 
procedure. By nominating each of the trust support procedures we can 
find all the points in the trusted processes from whidl the actual 
trust is invoked. By examining the lo;Jic related to these invocation 



www.manaraa.com

250 

points it may often be possible to relegate other execute.1 proce.1ures 
to only a minor level of scrutinisatien. For exanple when a Sdtoouler 
is acknowlooging receipt of a request and utilising the SEND LOW CLASS 
TASK r£SSJ\GE trust, scrutinisatien might be able to be confinoo to the 
code local to the procooure from which the ackn(7.olloogement is 
triggeroo. Clearly h(7.olever, when trustoo code is itself executing 
security relatoo functions (e.g. user authentication) the invocation of 
any specific trust (e.g. the ability to checX a password) forms only a 
small part of the critical logic . 

It is also ....orth noting h(7.oIever, that facilities are providoo in the 
Vf.£ system to cause eadt actual invocatien of a trust to be auditoo. 
This optional run-time monitoring of the execution of trustoo processes 
both allows the Ia. designers to refine the allocatien of trust, basel 
en experience of using the system during its developnent phase, and 
helps a live system's security manager to detect on a spot dtecX basis 
any anomalous use of trust. 

Not only is it possible to structure the TCB into separately 
identifiable coqx:x1ents with different respcnsibilities, it is also 
possible to provide a fine grain categorisatien of the different 
degrees of trust vestoo in the trustoo processes. By identifying the 
points in the processes where trust is invokoo, this categorisatien can 
in IIBny cases be usoo to structure the scrutinisation of the trustoo 
processes themselves. lliis greatly roouces the size am complexity of 
the evaluation task. 



www.manaraa.com

251 

The author is indebte:I to Alle1 Kitche1ham and Dave ~Vitie of Icr. 
whose original ideas and active involvement in detailoo design have 
made this paper possible. 

1. WIE/B. A ~el for the Iealisaticn of a Total SystE!ll Cbncept, Icr. 
Technical Jrornal, Vol. 2 Issue 2, 1980, B C Warboys. 

2. \'ME Security Opticn Product Overview, Ia.. Internal Document. 

3. Trustoo mer SystE!ll Evaluticn Criteria, IXlD C5C, Fort Meade, 
foti, August 1 3. 

4. Security in a Large General Purpose Operating SystE!ll: ICL's 
Awroadl in WIE, Ia.. Technical Journal Vol. 3 Issue I, 1982. 

5. CADES - Software Engineering in Practice, Icr. Technical Jrornal 
Vol. 2 Issue I, 1980. 

6. Secure Calputer SystE!ll: Unifioo Expositicn and btlltics Inter
pretaticn, . ESD-TR-75-306, Mitre Corporaticn report Ml'R-2997, 
January 1976, DEBell and L J LaPadula. 



www.manaraa.com

12 
SOFTWARE RE-ENGINEERING - AN INTERMEDIATE APPROACH 

Richard H Warden BSc XIQA 
Research Xanaqer 
X3 Group Limited 

Great Britain 

This paper describes an approach to re-engineering 
software based on the application of modern structured 
programming techniques. From a case history, the paper 
describes the steps of the re-engineering methodology, 
the tools that may be used and the types of problems 
which have to be solved. This form of re-engineering is 
considered to be an intermediate step in the goal to 
develop full reverse engineering methods. The 
understanding of the issues gained from commercial scale 
re-engineering can only contribute to the overall body 
of knowledge needed to solve the reverse engineering 
problems. 

Richard Warden is currently the research manager for the 
K3 Group in Worcester. He has spent the last three 
years researching and developing methodologies, tools 
and techniques to address both the management and 
technical problems of software support and maintenance. 
These tools and techniques have been used in a wide 
range of field assignments. 

252 



www.manaraa.com

253 

1.0 INTRODUCTION 

1.1 Context 

This paper describes some of the practical software 
re-engineering work performed by the K3 Group. The 
re-engineering methodology described was designed to 
offer a practical solution to the needs of commercial 
software re-engineering projects. 

Although the methododology used is based 
design and programming principles, the 
seek to justify the methodology other than 
cost/benefit justification. 

on structured 
paper does not 
by commercial 

Therefore it is left to the reader to associate the 
findings from this work with theoretical descriptions of 
how re-engineering or reverse engineering may be 
accomplished. 

The term 'methodology' is used as a generic name for all 
of the principles and methods required for a 
re-engineering project. It is beyond the scope of this 
paper to discuss the detailed design of the methodology. 
However important methods will be discussed. 

1.2 Definitions 

The terms reverse engineering and re-engineering are 
used freely today, often without any definition. Other 
terms such as inverse engineering, recycling and 
restructuring are also used. In this paper it is 
necessary to be precise in the use of these terms so 
that the work described here can be seen in its overall 
context. 

Full reverse engineering is defined as the abstraction 
of a formal specification from code, from which forward 
implementation is performed into the required language 
and operating environment. 

Re-engineering is defined as the use of structured 
design and programming principles to modify 
significantly existing code and data structures within 
the current language and operating environment. It, 
too, requires the generation of a specification, but not 
for re-implementation in a different environment. 



www.manaraa.com

254 

1.3 Hotives 

The motives for re-engineering need to be considered. 
The main objective is to improve significantly a 
system's maintainability and extend software life. 
within this objective there is a need to keep/re-use any 
code or data structures which are sound. This requires 
an intelligent and selective approach towards the task. 

It should be noted that code of any age may be 
re-engineered. 

1.4 Overview 

This paper will use case history data to highlight the 
major technical aspects of the K3 approach. There is a 
business judgement area outside the scope of this paper 
covering the initial justification of are-engineering 
project. In the case history this process was performed 
by K3 with the support of an expert system based tool 
developed for the analysis of software maintenance 
operations. 

Therefore the rest of this paper will describe the K3 
re-engineering method under the following headings: 

- the case history 
- the pilot project 
- the main project 
- the results 
- conclusion 

Although the paper focusses on technical aspects, the 
business justification must not be ignored. If 
re-engineering and reverse engineering are to become 
accepted techniques in industrial practice then they 
must be proven on cost/benefit grounds. Failure to do 
this will lead to these techniques becoming nothing more 
than interesting concepts to be pursued in academia. 

2.0 THE CASE HISTORY 

2.1 The project background 

A financial services company had developed core systems 
in the early 1980s using, largely, non-structured 
techniques. The systems were implemented in COBOL on 
an IBM mainframe and had been significantly modified 
over their five year life. Following a take-over, the 
company had adopted a more aggressive business plan with 



www.manaraa.com

255 

high growth targets. This plan would mean significant 
changes to IT systems. 

2.2 The pro~lem 

certain areas of the systems were considered to be very 
difficult to maintain. It was accepted that in their 
current state they would not support the new business 
objectives which required significant changes. The long 
term aim is to redevelop these systems completely, but 
in the interim it was decided to re-engineer the the 
most unmaintainable parts. 

About 10% of the code inventory of 400,000 lines was 
shortlisted initially for re-engineering. This 
represented about 40,000 lines of non commentary source 
code. Of this code 24,000 lines were procedural logic. 
The programs were a mixture of batch and screen based 
programs. The programs ranged in size between 1000 and 
5000 lines of non-commentary procedure source code. 

3.0 THE PILOT PROJECT 

The first step of the re-engineering was to conduct a 
pilot project. This took about two months. 

3.1 PUrpose 

The purpose of the pilot project was to: 

- calibrate the estimating method 

- identify re-engineering criteria 

- identify tools requirements 

3.2 How it was conducted 

The pilot project was conducted in two phases. The 
first phase consisted of: 

- manually re-engineering a program 

- examining tools available for the client's 
environment, which led to the development of a 
procedure code analyser 



www.manaraa.com

256 

The second phase consisted of: 

defining the criteria by which the re-engineering 
would be judged 

- using the code analyser to analyse all the 
procedural code 

estimating the project using the above data 

3.3 Estimation 

In the case history it was estimated that it would take 
approximately 65 man weeks to complete the project. As 
the project would re-engineer about 40,000 lines of code 
this represents a re-engineering productivity of about 
125 lines of code per man day. It should be remembered 
that not every line will be changed; indeed the project 
will aim to keep/re-use sound code. 

Estimating re-engineering work is difficult. There are 
no accepted methods. K3 used its own method which 
looked at a number of key factors about each program. 
They included: 

- program length 

- complexity 

- status of specification 

- severity of structural problems 

- severity of control flow violations 

- severity of data structure problems 

The pilot program 
this particular 
process requires 
criteria and turn 

was used to calibrate the method for 
environment. clearly, the estimation 

a lot of judgement to take these 
them into work estimates. 



www.manaraa.com

257 

3.4 Re-enqineerinq criteria 

A key task was to set criteria by which re-engineered 
programs could be evaluated. From the manual 
re-engineering the following criteria were set, which 
included: 

- achieve a procedural structure which has good 
factorisation and depth 

- split large procedures to improve functional 
cohesion 

- amalgamate arbritary procedures into in-line code 

- remove unnecessary files 

- remove data usage violations 

- minimise access to file I/O sections 

- minimise working storage duplication of data 
structures 

simplify complex control flows by removing knots 
and control flow violations 

- remove redundant code 

- make cosmetic changes, e.g. standardise data 
names and improve code layout 

- maintain original performance 

Each of these criteria can be defined in more detail. 
For example in checking for control flow violations it 
was necessary to include site programming standards such 
as, no PERFORMs of paragraphs, and no jumps out of 
PERFORMed code. 

3.5 Tools requirements 

The mainframe environment already supported a passive 
data dictionary which provided static data usage 
information. To help analyse procedural code, an 
existing static code analyser was modified for this 
project. 

The analyser was run on a pc. Source files were 
downloaded to the pc via a terminal emulation program. 



www.manaraa.com

258 

The analyser had a number of features not usually found 
in commercially available COBOL analysers: 

- it used true graphics techniques to produce good 
graphical representation of program structure and 
control flow complexity; these displays could be 
edited interactively and printed 

- it could check for possible recursion 

- it could analyse programs larger than 10,000 
lines with a 640K RAM PC; PC based analyser are 
often only guaranteed to analyse small programs 
of 1000 lines 

- it could handle incomplete procedure code, i.e. 
unexpanded source files, a useful facility if 
copy libraries only contain small, common 
routines 

This ~naly~er was developed by K3 specifically for 
re-eng1neer1ng work due to the limitations found with 
commercially avalilable tools. 



www.manaraa.com

259 

4.0 THB MAIN PROJBCT 

4.1 The processes 

The main project involved performing the 
on each of the program units selected. 
were: 

- updating the specification 

same processes 
These processes 

analysis and production of are-engineering 
specification 

- cosmetic re-engineering 

- structural re-engineering 

- testing and acceptance 

The following descriptions will concentrate on the 
re-engineering processes. 

4.2 Updating the specifications 

The original specifications had been largely paper 
based, and contained many unincorporated change 
documents. Therefore revised specifications were 
written and stored on computer media. These documents 
provided functional descriptions of programs which were 
the basis for program validation. The majority of this 
work had to be performed manually although some data 
from the code analyser was incorporated. This phase 
took 22% of the time. 

4.3 Analysis and production of re-engineering 
specifications 

Each program was analysed against the re-engineering 
criteria to produce a list of re-engineering changes. 
This list was reviewed with the client, and the final 
re-engineering specification was agreed. 

Although many programs required a common set of changes, 
there was significant individual work required for each 
one. This indicates that re-engineering cannot easily 
be automated. This phase took 16% of the total effort. 



www.manaraa.com

260 

4.4 cosmetic re-enqineerinq 

cosmetic re-enqineering was performed on the programs. 
Work included: 

- prefixing of data names 

- reordering of data names 

- addition of section summary descriptions 

- insertion of called and calling data 

- 'beautification' of code 

cosmetic re-engineering on its 
improving code understandability. 
5% of the total effort. 

4.5 structural re-enqineerinq 

own goes some way to 
This phase took about 

structural re-engineering involved the major improvement 
work done to both data and procedural code. The 
re-engineering criteria described earlier are put into 
practice. Clearly this is a skilled task and one which 
is very difficult to automate in any way. It took some 
30% of the total effort. 

At any time during the re-engineering the programmer 
could analyse the current version of a program, check 
various metrics and look at the current procedural and 
control flow structures. 

The work of this phase is best illustrated by describing 
some of the problem types found and solved. However one 
general conclusion was that very often the lowest level 
of processing code was sound. The actual processing of 
a transaction was correct. The real problems were more 
concerned with poor design structure and data usage 
which made the programs difficult to understand and 
maintain. 

The following are some examples of the problems which 
had to be addressed. 

4.5.1 Excessive fan-out 

Some programs displayed high fan-out, with one example 
expanding from 5 to 46 sections over one logical level 
of its structure chart. Investigation revealed that 



www.manaraa.com

261 

there were no transaction centres involved. 
there were many small, singularly accessed 
which could be incorporated as in-line code. 

4.5.2 Recursion 

Instead 
sections 

The code analsyer identified recursion between PERFORMs 
of sections. This is meant to be illegal in COBOL . As 
the code was written, it was not thought that the right 
conditions could occur for recursive paths to be 
executed. However, pity the poor support programmer who 
may have to understand and modify these structures, and 
ensure that recursion still cannot happen. 

4.5.3 Multiple data structures 

Apart from problems with procedural code, it was 
necessary to deal with a data related problem which had 
a large, negative impact on program maintainability. 
Over time, many working storage copies of record 
structures had been declared for new processing 
requirements. This appeared to be defensive 
programming . Rather than use existing working storage 
records, new copies were created. This saved having to 
understand how existing record structures were used, but 
meant that it became increasingly difficult to 
understand data usage in these programs due to the 
multiplicity of data. 

4 . 5.4 Unwanted files 

Another type of design problem was the use of temporary 
run-time files to store relatively small amounts of data 
from intermediate calculations. This required 
additional I/O and JCL code and gave another source of 
error for run time failure. These files were replaced 
by internal tables. 

4 . 5.5 Poor factorisation and cohesion 

Poor factorisation and cohesion was found in two forms. 

Some sections were found which contained significant 
control logic mixed with processing code. Often these 
sections were quite deep in the logical structure of the 
programs. 

Other sections were found to be very large, perhaps 33% 
of a program, and contain > 50% of all predicates. 
These were amorphous control sections which had grown 



www.manaraa.com

262 

over time and did many things. 

The solution 
re-design of 
higher level 
functions, and 

to these problems was the intelligent 
the program structure so that there are 
controlling sections with well defined 
lower level processing sections. 

4.5.6 Logic splitting 

Logic splitting was found in a number of programs. This 
tended to be concerned with error handling. For 
example, after I/O a common status routine would be 
called, and if an I/O error had ocurred the program 
would terminate in this routine. This meant that the 
error was not handled in the context of the process 
which had requested I/O. Instead, status checks were 
made at the process level, so that errors could be 
reported in their context. The result of these changes 
increased the McCabe complexity. 

4.6 Testing and acceptance 

This phase took 15% of the total effort. Validation of 
the re-engineered code was performed by parallel running 
them against the original versions. For batch programs 
these runs could take advantage of existing test sets. 
However for the screen programs the problem was more 
difficult. An automated screen testing product was 
evaluated at this phase. However, some of the screen 
programs had been changed from field to full screen 
validation in the re-engineering. Whilst the underlying 
program functions were unchanged, the changes to the 
screen response sequences made the use of an automated 
tool difficult. 



www.manaraa.com

263 

5.0 THE RESULTS 

5.1 Introduction 

It can now be examined as to whether the initial 
justification to re-engineer has been supported by the 
results of the project by looking at costs, benefits and 
other findings. 

5.2 Costs 

The cost of re-engineering the code varied from one 
program to another, but were in the £1.50 to £3.00 per 
line range. The actual productivity achieved was about 
100 lines of data/procedural code per man day, some 20% 
less than the estimate. Although 20% is not a dramatic 
difference compared with some software estimating, it is 
necessary to know where the estimation went wrong. 
There were two main reasons: 

- it took longer to revise the specifications than 
estimated 

- the productivity associated with deep 
re-structuring was lower than anticipated 

An additional cost item was 25 man days spent modifying 
and running the code analyser for this work. However, 
to have manually generated the code analyser information 
would have taken over 100 man days. 

An alternative to re-engineering is a complete re-write, 
or full reverse engineering. However it is difficult to 
re-write part of a system when it has to fit in with 
overall system restraints. The major benefits come from 
an entire system re-write. Clearly this would be a very 
much more expensive option. 

5.3 The benefits in detail 

Quantitative benefits were measured. For example: 

- individual programs reduced in size by a few 
percent to up to 30% 

- control flow violations were removed 

- recursion was removed 



www.manaraa.com

264 

- the McCabe measure was reduced by up to 28%, 
indicating the removal of unnecessary predicates 

- structure diagrams showed the simplification of 
program structures, e.g. reduction in multiple 
links to I/O sections by up to 40%, or the 
reduction of excessive fan out 

control flow displays showed the improved flow in 
controlling routines, e.g. removal of backward 
jumps in a section so that processing was 
sequentially down the code 

- program performance was improved by up to 15% 

Some important qualitative benefits were also recorded: 

- few programs had had good specifications; now 
they all have, with additional data from the code 
analyser that has not been available before 

- the standardisation of data, section and 
paragraph naming conventions has greatly improved 
the readability of the code 

5.5 The benefits generally 

The overall subjective comment is that where these 
programs were once very difficult and costly to 
maintain, they are now straightforward to maintain. 

This particular case history has been reported a feature 
article in the computer press (Computer Weekly 29 June 
1989). The company concerned has recorded a doubling of 
maintenance productivity on the re-engineered code. 

This is a very important result as it indicates that 
re-engineering can produce valuable benefits for 
commercial scale systems. If IT users can be convinced 
that software re-engineering is worthwile, then this 
paves the way for the introduction of reverse 
engineering. 

5.5 Some other findings 

Here is a summary of other findings: 

- the pilot project should include at least two 
programs to improve the basis for estimation 



www.manaraa.com

265 

- the cosmetic re-engineering should be performed 
before the main analysis which determines the 
re-engineering specification 

- it would be significantly more difficult to 
perform re-engineering without tool support 

- the McCabe measure showed a remarkable 
correlation with program length, and was not 
considered very useful; its main help was as a 
basic measure of testability 

K3 had previously had code processed through a leading 
code re-structuriser to determine how such a tool could 
help with this project. The code re-structuriser would 
not have helped for several significant reasons: 

- some of the constructs it produced were 
considered significantly less maintainable than 
the original code 

- the tool only addressed a small subset of 
re-engineering problems as it had no concept of 
structured design (as opposed to 
structured programming) 

- the tool caused code expansion of 40% in the 
trial, whereas a code size reduction was measured 
in this project 

Although these findings relate to a specific tool, they 
do show that a relatively simple application of 
restructuring algorithms, based on structured 
programming (not structured design) principles, ignores 
significant problem types and are very likely to produce 
less maintainable code. 

Code restructuring tools raise a deeper question. If it 
has not been possible to automate the software design 
process in the development phase, is it possible to 
automate a re-design process in re-engineering? Both 
tasks appear to be knowledge-based tasks of a complexity 
level which has not been automated. 



www.manaraa.com

266 

6.0 Conclusion 

One of the major problems associated with full 
engineering is that of dealing with arbritary or 
design structures. Design problems may be either 
procedural code or the data structures. 

reverse 
problem 
in the 

If the current design of the code and data addressed in 
this project had simply been reverse engineered into 
some higher level description, then many of the design 
shortcomings would be present in a forward 
implementation into a new environment. 

This problem becomes more severe as the scope of reverse 
engineering is widened. If an objective is to reverse 
engineer an entire large scale system, then any 
approach, manual or automatic, must be capable of 
analysing the architecture of the system as well as 
SUb-system or program design. 

There is a limit to the application of manual techniques 
to very large systems. This dictates a tool supported 
approach which may have a mechanistic front end, i.e. 
one based on code and data analysis, but after that 
there need to be intelligent tools. 

To develop such an approach is clearly a very 
significant task. However, by performing re-engineering 
projects of the type described here, it may be possible 
to build a set of knowledge which may be the starting 
point for an intelligent knowledge-based approach to 
reverse engineering. 



www.manaraa.com

13 
THB MAINTBNANCB OF LARGB, RBAL-TIMB 

BMBBDDED SYSTEMS FROM THE PBRSPECTIVE 
OF KNOWLEDGB BNGINEERING 

KEVIN J PULFORD 
GEC-Marconi Software Systems 

Elstree Way, Borehamwood, Herts, WD6 lRX, UK. 

ABSTRACT 

looking at the process of maintenance from the perspective of knowledge 
engineerlng can lead to useful insights. A generalisation and extension 
of work carried rut in applying knowledge engineerlng to maintenance and 
Software Engineering for real-time embedded systems are discussed. 
Support for maintenance is ctiscussed including recent research results and 
areas for further extension are identified. 

INTRODUCTION 

This paper looks at the maintenance process from the perspective of 

knowledge engineerlng. The ideas in this paper are based al work carried 

rut within the ALVEY SOCRATES project to ilnplement a Software Diagnostic 

Aid for a large real-time embedded system and in the ESPRIT ASPIS project 

building knowledge based CASE tools. Looking at the maintenance process 

from the knowledge engineerlng viewpoint gave us new insights into how it 

worked and how knowledge based systems oou1d support maintenance. This 

paper oontains an extension and widening of sccpe of the original ideas to 

examine the process in general, the sorts of knowledge used and the 

possibilities of extending tool support. 

267 



www.manaraa.com

268 

In the next section we give some background to the nature of 

maintenance of large real-ti:me embedded systems. This is followed by an 

interpretation of the maintenance process from the perspective of 

1mowlecige engineering. We then look at the techniques used at the moment 

to support maintenance and how these are seen in the CXI'ltext of 1mowledge 

engineering, with a look at recent research and how this fits in with the 

1mowledge engineering. Finally some pointers are given where futher 

developments would be promising. 

BACZGlUIID 'm '!BE HA1HI'J!HA'NCE OF LARGE REAIt-'l'.DIE EIIBEDDED SYSTEMS 

La:t:ge real-time embedded systems are characterised by being complex and 

requiring large teams for their development. An embedded system project 

often involves the development of new hardware as well as software. This 

leads to the sorts of problem of ensuring that in building a piece of 

equipment that the desjgn of the software must match the version of the 

hardware - this is not always as trivial as it seems and allows great 

scope for error if not controlled. 

The customer for embedded systems demands a quality system. In the 

sorts of environments that embedded systems are used system failure and 

the failure to retum the system to operatial can be acutely embarrassing 

if not fatal. Also such systems can have a field life of 15 years or 

more. Part of the quality requirement is to ensure that the system can be 

maintained if necessary by someone other than the original system 

builder. A large part of the quality aspects is ensuring proper and 

adaquate desjgn documentation. In the discussion which follows this is 

assumed to be available. Because of the complexity of such systems and 

the need for adaquate documentation the volume of the documentation is 

vast and can take up many feet of shelf space. 

one of the oomplications of real-time systems is the need to split 

functions into several ports and execute them separately because of the 

need to execute several functions at once. The use of a multi-programming 

executive may be ruled cut because of the safety critical nature of the 

application. 



www.manaraa.com

269 

The process of software maintenance consists of three main types of 

activities: 

i) Fault report clearance 

ii) Upgrades to take into account changes of hardware 

iii) Upgrades to extend system functionality 

Fault report clearance involves the diagnosis of faults when the 

system does not: perform to specifi.c:ation and the generation of repairs to 

correct the behaviOJr of the system. However, it is often the case that 

queries relating to bugs are .aboot combinations of circumstances which are 

not OOITered in the requirement specification but for which the customer 

believes the systems response is not appropriate. In this case the 

appJ:"Cllriate changes to the requirement will need to be decided with the 

customer and system engineer. 

We have identified three main steps in the maintenance cycle. These 

tend to be similar across the types of activity identified above. The 

steps are: 

i) Modify requirement; to determine how the requ.irement needs to be 

change if at all. 

ii) Devel.q> the modified design; to make the system conform to the 

revised requirement. 

iii) Test the mooifjed system; to verify the system now runs according 

to the revised requirement. 



www.manaraa.com

270 

In the Modify Requirement step for a fault report clearance it first 

must be established that the fault report indicates a deviation from the 

requirements. Sometimes this is obvious but often, and especially on 

large systems, the bug report may relate to behavioor under a combination 

of circumstances not covered in the requirement specification. In this 

case the behaviour that is required in these circumstances must be 

discussed with the system engineer or the customer. To support this 

discussion the maintenance engineer may well have to extract details of 

the behavioor of the system relevant to the fault to supplement that given 

in the specificat:ion and which gives a wider and more general view of the 

behavioor. The engineer may well go down to the code to ensure that the 

behavioor is implemented exactly as in the design document. During this 

process the engineer must be able to relate the design and code to the 

behavioor of the system. Once a modifica:tim has been agreed the engineer 

needs to ensure that the mcrlified behaviour of the system does not have 

any adverse oonsequences when it is plaoed in its operating environment. 

This means a much more extensive search of behaviour of interacting 

facilities than in the fault report and also needs experience of the way 

facilities can and will interact. 

In the design moctifica.tion step the engineer will need to identify the 
mechanisms wjthjn the system wh.i.ch are associated wli:h the changes jn the 

modified requirement and then devel.q> a modif.icat:ial of them. During this 

process the engineer will need to understand the relationship between the 

requirement and the design. In the fault report case the engineer seeks 

to isolate the mechanisms which have deviated from the original 

specification. Part of this process in the case of embedded systems is to 

decide whether the hardware or software is at fault. The next stage is to 

understand the mec:hanism that needs to be modified. This will involve 

extracting the relevant pieces of information from the documentation. A 

mechanism is an abstract:.ion from the design representing the sequence of 

operations to implement the behaviour of a facility. Mechanisms are 

simple enoogh for the engineer to reason abatt and develop modifications 

of the mechansim to adjust the behaviour to match the modified 

specification. In level of abstraction they are mid-way between code and 

system level and so that once the modif.icat.ial has been deve1q;>ed in terms 

of the mechanism it can easily be translated to a code design change. 



www.manaraa.com

271 

Following this he will check for interactions with other parts of the 

system to ensure that the mc:xtificat:.iat does net: cause any adverse affects. 

Often there is a pause in the middle of this activity while it is 

decided when to implement the moclif:icat:icm and if there are any go-aroonds 

that can be issued. If the software is part of an embedded system which 

is being produced in any quantity then a deciskr1 has to be made on which 

productial batch to start including the modified system and whether to 

issue upgrade kits for systems already delivered into the field. 

The final step is to test the system and check the results against the 

expected results. Usually there are sets of tests used during the 

devel.cpment phase and it is merely necessary to extend these to cover the 

modified system. If the modification is small the engineer may elect to 

run only a sub-set of the tests. This will be determined by the 

criticality of the system and the ease with which it is possible to 

isolate the required tests. 

Part of the nature of the maintenance process is that it is needed 

only cxx:asiooally. Only sporadically do bugs need fixing or new features 

need to be added to the system for example during mid-life updates or to 

respond to new military threats. This means that the staff used to 

maintain the system are sporadically required to work al the system. Over 

a period of time the details of hOli and why a system was implemented tends 

to fade from the mind or an engineer may leave or be transfered thus 

necessitating using different engineers. An important element of the 

naintenance process is the need for engineers to learn or refresh their 

nemories of the desjgn of the system. One of the prd::>lems associated with 

large systems that makes this very diffk:ult is the size and complexity of 

the documentation. 



www.manaraa.com

272 

KNOWLEDGE USED IN MAINTENANCE 

In general the sorts of knowledge required for software maintenance are 

s;mj1ar to that required for the development process. The maintenance 

engineer will need backgrOJnd knowledge in software techniques such as 

coding strategies, computer languages, design methods, testing strategies, 

software aspects of driving hardware, q>erating systems and many others. 

In adciit.i.al it is helpfUl if the engineer has some broad understanding of 

the sorts of system he is working on and its intended to uses. For 

example, if he is to work on Radar Software then he needs to know in 

ootJ..ine how radars work and what they are used for. However, he need not 

know the det:alls of radar and microwave engineering nor have any deep 

understanding of the Radar Equation. 

w.D:hin the system specific knowledge used by the engineer two broad 

categories of knowledge which the engineer seems to use independently. 

These are 

a) Application knowledge which is abstract knowledge about the 

application which the engineer uses to develq> and modify system 

designs and diagnose faults in them. 

b) Executive knowledge which is pragmatic knowledge about the 

mechanics of how to develop a working system. This includes 

things like how to use compilers, editors and similar tools, 

testing strategies, documentation standards, configuration 

management and similar project procedures. 

The engineer uses this knowledge in two ways. Firstly he uses it to 

understand the information he rec:ieves abc:ut the system and the way it was 

developed. That is he relates it to his background knowledge and 

.identifies instances of concepts he has encountered before and also has 

rules for reasoning about them. Secondly he uses it to develop 

modifications to the system and diagnose and clear faults. 



www.manaraa.com

273 

In maintenance process itself we identified four frequently occuring 

activities. These are: 

i) Diagnosis: IDeating faults which we abse:r:ved require knowledge of 

the relationship of symptoms to faults and utilised some of the 

following activities. 

ii) Abstraction: abstracting information about the system and 

building this .into a model of the mec:harrlsm of the aspect of the 

system being investigated. These models helps the engineer 

reasa'l abcut the system. The engineer builds a model that relates 

both to the system level and to the lower levels of the design so 

that he can reason at the system level but also relate this to 

the lower levels. The type of model built will depend on the 

aspect of the system the engineer needs to reason about. For 

example, if the engineer needs to reason abcut the way a function 

is calculated he will not necessarily be worried about timing 

considerations. 

iii) MarrlpuJ..ati.a1: Manipulating the model develcped during abstraction 

to produce a modified model that reflects the revised 

spec:ifi.cat.ial. Here the relationship of the model to the system 

specification is important and the type of model must be such 

that it suitably reflects the type of change to the 
spec:ification. For example, a change in the way of calculating a 

function would need a function model. Another need is to relate 

the modified model back to the desjqn so as to develop a modified 

design and thence modified code. 

iv) Checking: once a mod.ificat:ial has been formulated it needs to be 

checked to ensure that it does not interfer with other parts of 

the system. This may involve building other types of models 

relating to other aspects of the system using abstraction. The 

engineer also uses knowledge based of experience of the possible 

ways that system compooents interact to decide on the sorts of 

searches he needs to undertake and hence the models he needs to 

build. 



www.manaraa.com

274 

An important idea that has come out of the application of knowledge 

engineering to software engineering is the idea of programming plans 

[7,8]. A programming plan is a procedure or strategy for realising 

.intentions in code. It has been observed that engineers make extensive use 

of mental strategies based al experience rather than each time building 

code afresh oot of the primitives constructs of the programming language. 

The engineer also uses programming plans to understand a section of code 

or part of a design by comparing what he expects as an ilnpl.ementation of a 

requirement from. his programming plans and what is actually given in the 

design. It is feasible that programming plans can be used at higher levels 

of abstractim and by extension to building mec::banism models. It is quite 

possible that there are addltional. programming plans for the construction 

of mechanism models. However, the author is not aware of any work in this 

direction. 

EXISTING SOLUTIONS 

Having looked at the sort of knowledge needed in maintenance and the way 

it is used we now look at the support that is currently available within 

maintenance projects. 

Maintenance engineers are expected to join projects with sufficient 

background knowledge. If not then they have to rely on courses and 

textbooks to bridge the gap. Project specific knowledge is incorporated 

into project documentation. Executive knowledge is encapsulated in the 

project procedures manual and is usually sufficiently stlylised to make it 

easy to p.ick up. The use of individual tools can be picked up from the 

vendors user manuals. However, the new engineer will need to find out the 

style with which the project employs the tools and the places that files 

are held within the development system. 



www.manaraa.com

275 

Informatial (Xl the system design is put in the system desjgn dcx::ument. 

The content of suen documents is defined in the project prooedures suen as 

JSP188 (9] whidl prescrlbes the content and notations to be used on the 

project and which the system purchaser imposes on the system builder as 

being the information necessary to support the maintenance of their 

system. From the Knowledge Engineering point of view this is like 

specifying a knowledge represent:atJan in which the sorts of concepts and 

rel.aticmships between c:x:ncepts that must be identified for the system are 

layed down. The oojective of such standards is that they aim at ensuring 

that in some sense the desjgn documentation is complete and will contain 

all the information the maintenance engineer is likely to need. 

Ancther aspect of the projects procedures is that they also should 

ensure a certain commonality of style of documentation and approach. 

withoot suen prooedures the many people al the project woold each produce 

different styles of documentation. A consistent style is important from 

the maintainer's po.int of view since it means that alce he has understood 

ale part of the dcx::umentation he can use the knowledge of the structure of 

this and its assumptions when he inspects in other parts. 

specific design methods will usually have ale or more special notation 

associated with them. The advantage of such notations is that they 

formalise certain aspects of the design and aid reasoning about these 

aspects. For example, data flow diagrams formalise the data flow in a 

system. These not:at..ials help bWld mechanism models as long as the model 

uses the aspect related to the notation. Thus when selecting a design 

notation or method the engineer tries to select the one that reflects the 

predominent reasoning model for the type of system being developed. For 

example, in its simplest terms this m.iqht involve deciding between control 

flow or data flow notations. 

The structuring of code is an important aid to understanding since it 

limits the number of c:x:nstructs and complexity of the code, and restricts 

the extent of side-effects. This aids the understanding of the code since 

it is easier to indentify which plans are being used and also make it 

easier to check for interactions. 



www.manaraa.com

276 

One of the more useful tools in maintenance is the code cross 

reference. Its immediate use is in checkinq interactions, for example, 

checkinq if a variable is set or read where the enqineer expects it to be 

but it can also be of help in understandinq the code as well. 

FUTURE SOLUTIONS 

The previous sections have shown what the mamtenance process looks like 

from the knowledqe enqineerinq perspective. In this section we indicate 

where we believe tool support lIlight be added and report on some work and 

how it fits our picture of the maintenance process. 

one of the peren.ial p:rd:>lems in maintenance is the need for enqineers 

to build up or refresh their knowledge of a system. One promising 

approach that has been investigated is the use of hypertext [2]. This is 

a data storeage system with a flexible retrieval and navigation user 

interface based on windows. 

with hypertext it is possible to set up links between items in one 

window to items in another. By typing the links one can qet a variety of 
information on an item. In the context of understanding the design of a 

system, items can be data or procedures in the code and tasks or modules 

in the design. One of the advantages of hypertext is that the links can 

form a network so that the user is free to explore in any direction he 

desires and is not fixed by the order of the text on a page. A study has 

been made of the application of hypertext to mamtenance by the University 

of Dumam [3] and we have made a study at MS WS for use in the European 

Fiqhter Aircraft [4]. So far we have not come across any reports of 

hypertext in use in mamtenance but it is really only a question of time. 



www.manaraa.com

277 

one of the areas that has received a lot of interest is the area of 

debugging or prci:>lem identification. Seviora [1] contains a review of a 

range of techniques and identifies three basic approaches. 

i) Program analysis which. compares a program with its specification. 

ii) I/o based which compares the actual output with the expected 

output. 

iii) Intemal trace which. monitors internal events inside a running 

programme and compares this to a specification of the required 

behaviour. 

The program analysis approach relies heavily on programming plans. 

Proost [7] is a suoessful example of this type of approach. It works from 

a specification of the system in terms of a number of goals and uses its 

lmow1edge base of plans to synthesis possible solutions and tries to match 

these to the program cxxie. When Proost falls to match it assumes there is 

a program error and attempts to isolate it. Proust has only reported to 

have been used on small classroom examples. If it were to be used on 

larger prci:>lems it would need some mechanism to deal with the much larger 

size of lmowledge base needed. One solution from existing practice would 

be to use a hierarchical set of levels of abstraction. This, of course, 

would also need a corresponding multi-level specification. 

An example of an internal trace approach is the Message Trace Analyser 

[10]. This system relies on monitoring interprocess messages and relating 

these to a specification of the expected behaviour of the system as 

expressed in a finite state machine. This is equivalent to building a 

mechanism model and relating this to the monitored output from the system. 

The main sort of mission that the Message Trace Analyser was designed for 

is the analysis of large amounts of monitoring data where an actual fault 

is only a rare occurance, such as in telephone exchanges. 



www.manaraa.com

278 

The OSIRIS system [5] developed within the SOCRATES project is an 

example of an I/O based system. OSIRIS captures the engineers knowledge 

of the way that symptoms are related to characteristics within the code. 

So that given a set of symptoms OSIRIS will propose a number of 

characteristics to be searched for in the system code. OSIRIS can then 

execute the seardl, taking into aClClOOllt the areas of code that would have 

been act:ive when the suspected fault was observed to occur. These code 

searches are general purpose and thus have been found to be useful in 

ether parts of the maintenance and development processors. OSIRIS uses 

the system code for searches supported by knowledge of the way the code is 

structured and related to system modes. 

The I/O based and :intemal trace methods are obvioosly only applicable 

directly to the diagnosis activity. However, there are part of these 

systems wh.i.ch are more generally applicable. In the OSIRIS system the code 

searches have been foond to be useful in identifying interactions within 

the code and isolating areas of code associated with a particular facility 

or function. 

To handle system upgrades and identify the areas of design that need 

mod:ifying an approach nearer to the analysis approach will need to be 

used. As noted above the analysis approach has only been used so far on 

small classroom examples. To extend it to handle larger systems it will be 

necessary to handle a hierarchy of levels of abstraction. Another 

generaJ..isat.ial that woold be needed is in the area of mechanism modelling. 

An engineer will use different models depending on the aspects of the 

system he is considering at the time. Program documentation usually 

contains only a limited range of mechanism model at ony one level of 

abstraction so the engineer cannot rely on the documentation to supply the 

sort of model he needs. There is a requirement to support the building of 

models of a type different from that supplied in the system documentation. 

There is a need for futher research into the sorts of mechanism models 

engineers use and how they can be derived from typical system 

documentation. 



www.manaraa.com

279 

CONCLUSIONS 

We have seen by using the perspective of knowledge engineering how 

important the transfer of information from the development process to 

maintenance. This must also be matched by the ease with which the 

maintenance engineer can absorb the information inherited from the 

development. What the research into knowledge based tools should give us 

is a better idea of the sorts of information an engineer needs for 

maintaining a system and how he uses that information. This sort of 

knowledge shoold help us to improve the way we document our systems to 

make the task of the maintenance engineer easier and more efficient. We 

have pointed out several research projects in this area which have 

cont.r:ibuted to cur knowlege. However, our knowledge is still incomplete 

and we need further research to fill in the gaps. 

These research projects have also been useful in developing tools to 

support the maintenance process. Again there is a need to extend the 

OO'lerage and several areas have been indicated in this paper. However, one 

problem with these systems is the size of the knowledge bases required to 

support them. Further research might inclicate how they can be structured 

to get around these problems. 

Overall, from our experiences of using Knowledge Engineering 

techniques to maintenance, we found that it has given us new and powerful 
insights into how engineers conceive and reason about systems. These 
insights are sharpened and are made more pragmatic by the need to build 
systems that work and can demomstrate useful functionality. We feel that 
there is much more to disoover in this area and that knowledge engineering 
~as a lot more to contribute in the making of these discoveries. 



www.manaraa.com

280 

REFERENCES 

1. Seroi:ra, R.E., Knowledge-Based Programme Debugging Systems, IEEE 
Software May 1987. 

2. Fidero, J., A Grand Vision, BYTE October 1988. 

3. Fl.ett:al, N., Redocumenting Software Systems, Prooeedinqs of the Second 
Software Mamtenanoe Workshop 1988. university of Dw:ham, Centre for 
Software Maintenance. 

4. carruthers, D., App1icat:ion of Hyperoode - A Hypertext Tool. to EFA RDP 
Software Development, Intemal report of Marconi Software Systems ref. 
MSWS/EFE/-/M/0030. 

5. Williams, W., The OSIRIS Application System, SOCRATES Final Project 
Report GEC-Marconi Research Chelmsford. 

6. The STARTS Guide. 2nd Edition National Computing Centre 1987. 

7. Johnson, W.L., and Soloway, E., Proust: Know1edge- Based Program 
Understanding, IEEE Trans Soft Eng Vol se-11 No 3 Mar 1985 

8. Williams, R.C., The Proqranuner's Apprentice: Knowledge-Based Program 
Editing, IEEE Trans Soft Eng Vol SE-8 No 1 Jan 1982. 

9. JSP 188 SPECIFICATION FOR TECHNICAL PUBLICATIONS FOR THE SERVICE 
Documentation of Software in Military Operational Systems UK MOD. 

10. Gupta, N.K. and Seviora, R.E. An Expert System Approach to Real-Time 
System Debugging, Proc First Conf AI Applications CS Press, Los 
Alamitos, Calif 1984 



www.manaraa.com

Abstract 

14 
A Practical Procedure for Introducing 

Data Collection 
(with examples from Maintenance) 

Stephen Linkman, 
Lesley Pickard 

and 
Niall Ross 

STC Technology Ltd. 
Copthall House, Nelson Place, 

Newcastle under Lyme, 
Staffordshire, England 

ST5 lEZ 

This paper describes the experience of the authors in data collection activities, both on 

collaborative research projects and internal to the STC corporation. On the basis of this 

experience, we define a procedure for the introduction of data collection schemes. 

Examples, based on metricating the maintenance phase, are provided. 

281 



www.manaraa.com

282 

INTRODUCTION 

The ideas and methods described in this paper are the results of the involvement of the 

authors in major software data collection exercises in the United Kingdom and Europe, and 

the knowledge gained in the application of the principles established by those exercises to 

industrial situations within the STC corporation. 

This paper descibes a mechanism and a process by which one can make a start on the 

introduction of measurement and control into industrial software development. As a 

consequence of effective and useful data collection a broader spectrum of information should 

be available providing a sounder basis for software engineering. 

The data collection exercises were done in the Alvey sponsored SoftWare Data Library 

(SWDL) and the ESPRIT sponsored REQUEST (REliab iIity and QUality in European 

Software Technology) projects. The SWDL project was wholly concerned with the 

collection of software data. It set up a pilot scheme which was to have been followed by a 

commercial, non profit service. This has not yet been created. The REQUEST project was 

primarily concerned with research into Quality and Reliability, with data collection as a 

supporting activity. This project will end in January 1990. 

Our industrial experience is based on our activities within our own corporation in support of 

productivity and quality initiatives, and the introduction of programmes such as the IPSE and 
Software Factory initiatives being undertaken within STC. 

When, in 1985, we began to expand our data collection activities beyond the support of 

Mainframe Systems within ICL (where extensive data collection has been done for many 

years), the steps we thought necessary to establish an effective data collection programme, 

were:-

1 To define metrics and a data model for structuring metrics collection formally. 

2 To define customisation concepts formally (so that a general data model could 

be fitted to specific environments) and regularisation concepts (so that data 

collected to differing definitions of a metric might be compared ). 

3 To discover effective means of motivating software developers and line 

managers to collect usable data. 

4 To design an integrated activity for data collection and use, supported by 

suitable databases, tools manuals etc. 



www.manaraa.com

283 

5 To sell this completed package to client organisations. 

The fIrst set of solutions to the above was researched and implemented during 1986 and 

1987 and formed the basis of the Software Data Library activities and the initial data 

collection activities within REQUEST. The data collected was analysed and showed major 

defIciencies, the correction of which required a major revision and extension of the data 

model and its underlying methods. In addition the formal defInition of the metrics, the 

customisation concepts and the design of the integrated data collection and use activity had to 

be extensively revised. This revision was done in 1988/9, and now forms the basis of data 

collection exercises within STC and the REQUEST project. 

In addition our experience of introducing data collection has also led us to a number of other 

insights into the preliminary activities that organisations must undertake if data collection and 

analysis is to be useful. As a result, we advocate a three stage process:-

1 Setting of the goals of the data collection 

Before any data collection takes place, it is vital to identify how the information will be used 

and to determine how each metric contributes to each goal. Section 1 of the next chapter 

describes the goal-setting process and the problems in establishing these goals. 

2 Creation of a process model of the software development activities. 

Section 2 of the next chapter gives a brief outline of why a process model is necessary, what 

benefIts can be gained from it, and an outline on some techniques for creating such a model. 

It also relates these to future issues such as the models and techniques appropriate for IPSEs 

3 Creation of a customised data model relating the objects manipulated in the 

process model, their attributes and the roles that the people are fulfilling when 

they handle them. 

A generic data model must be created before the development of the process model. Once 

the entity framework of this is clear, process modelling can proceed while simultaneously 

attributes of interest in the collection environment are identifIed, defIned and placed within 

the data model. Once the process and generic data models are complete, they are combined 

(under the guidance of their intended users) to produce a specific model to structure data 

collection. The procedure is described in detail in section 3 of the next chapter. 

The [mal chapter contains a justifIcation of our choice of procedure, presented as a summary 

of what we thought when the data collection exercise began and what we learned during it. 



www.manaraa.com

284 

A PROCEDURE FOR METRICATION 

1. Setting The Goals 

The first step of any metrics collection scheme is to define the overall goals. or reasons for 

collecting data. These goals can be in many different forms. but it is important that none of 

them duplicate or conflict with each other. Another important point is to ensure they do not 

conflict with or duplicate the goals of any existing collection process which will continue to 

run in parallel. 

Each overall goal must be divided into clear identifiable objectives which can be quantified. 

The combined list should then be checked carefully to ensure that it is a true reflection of the 

overall goals. since the metrics will be selected on the basis of the quantifiable objectives. not 

the original goals which are too imprecise to quantify directly. If the mapping is incorrect 

then the metrics collection will not meet the overall goals. 

The metrics are selected on the basis of obtaining information necessary to meet the 

objectives. Each metric must show a contribution before its choice can be justified. As well 

as showing the metric to be useful. this also identifies how the metric will be used after it is 

collected. and makes it easier to identify the appropriate method of analysis. Without any 

idea of how to analyse or use data, there is no benefit in collecting the metrics. 

The most common temptation in setting up a metrics collection scheme is to start with a list 

of metrics and then attempt to justify each metric. This can result in two major problems 

which will cause the metrics collection to be less effective. or. even worse. counter 

productive. in terms of achieving the desired goals. The two problems are:-

1 There is no mapping between the metrics and the overall goals. This means that 

the goals cannot be shown to have been met by the metrics chosen. This may 

result in paying the costs of collection without achieving the desired benefits. 

In addition. the list of metrics may contain some metrics which measure the 

same attribute. Thus. without proper criteria for metrics selection. there is a 

danger of unnecessary data collection. 

2 Useful. or even essential. metrics may be removed from the list due to 

difficulties of data collection. Without the criteria to identify important metrics 

the selection of metrics may be based on suboptimal criteria such as "ease of 

collection" . 



www.manaraa.com

285 

The last point does riot imply that the ease of collection is not an important issue, but simply 

that a metric should not be dropped purely due to collection difficulties without regard to the 

infor mation it provides. 

Different types of goals will also require different background information and resources, 

which may themselves impose requirements on the data collection and analysis process. For 

example:-

1 Goals which Enable Prediction 

These require a model or an algorithm on which to base the prediction. An 

example would be the cost model COCOMO (cost, effort and schedule 

predictions) [BOEH8l], which itself requires additional information so that it 

can be calibrated to the user's environment. 

2 Goals which Enable Monitoring 

These require an expected value or relationship for comparison with the actual 

value. This could be target number of faults per module (expected value) or a 

directly proportional relationship between the size of a module and the number 

of faults (expected relationship). In general to be effective a number of other 

metrics must be captured in order to explain unexpected results. Without the 

necessary background information the information can not be interpreted and 

the effort involved in the initial metrics wasted. 

To be most effective metrics collection should be integrated with the development process. 

This will cause the least disruption to the collectors, and enable them and their colleagues to 

see benefit from the collection and analysis of the data. This may also help to counteract any 

fears of misuse of the metrics by management on the part of the workforce. Such fears must 

be overcome if the metrics collection is to be effective. The construction of a process model 

and associated data model are vital to the integration with the development process and are 

described in more detail in the following sections. 

2. Process Modelling 

A process model provides a way of describing and modelling the processes that people and 

machines undertake ~n any activity, for example software development, and the objects that 

they manipulate. From such a model it is possible to understand the points at which data 

collection fits in and the objects to which it relates. It is then possible, by construction of the 



www.manaraa.com

F
ig

ur
e 

1 
-

A
 s

im
pl

e 
pr

oc
es

s 
m

od
el

 o
f 

th
e 

m
ai

nt
en

an
ce

 p
ha

se
 

ne
w

 
re

le
as

ed
 

re
qu

ire
m

en
ts

 
sy

st
em

 

.~
 

. -
r 

" 
, 

" 
[ 

m
a

in
ta

in
e

r)
1

 
en

ha
nc

e 
fix

 e
rr

or
s 

fu
n

ct
io

n
a

lit
y 

\..
 

~
 

\..
 

~
 

+
 

m
a

in
ta

in
e

r 
+

 
en

ha
nc

ed
 

sy
st

em
 

fix
e

d
 

sy
st

em
 

.... -
, 

-
-

"'" 
m

ak
e 

ne
w

 
re

le
as

e 
\..

 
~
 

• 
ne

w
 r

el
ea

se
d 

sy
st

em
 • 

r 
" 

A
 

... 
up

da
te

 d
at

ab
as

e 
... 

"'--
-

KE
Y 

(R
a

iD
 

( 
A

ct
iV

ify
) 

I· I
te

m
s 

. 

bu
g 

re
po

rt
s 

.... 
r 

" 
im

pr
ov

e 
K

 .
. 

1 
pe

rf
or

m
an

ce
 

m
a

in
ta

in
e

r 
.J

 

"-
~
 

+
 

fa
st

e
r 

sy
st

e
m

 

{ 
m

a
in

ta
in

e
r)

 

... 
up

da
te

d 
... 

da
ta

ba
se

 

N
 

0
0

 
0'

1 



www.manaraa.com

287 

data model described in the next section, to assign to this process model the metrics 

associated with objects and activities and also to identify the likely sources of the 

information, be they machine or human. 

The completeness of the mechanisms used to capture the information to construct the process 

and data models will affect the quality and usefulness of these models. However it is also 

important that the methods used be appropriate to the complexity and criticality of the process 

being studied. 

Figure 1 shows a simple process model of the maintenance phase. This was generated using 

a tool called TPM which was developed by STC Technology. Used like this, TPM is acting 

as no more than a diagramming tool which enforces certain modelling theory conventions. 

There are a number of approaches to obtaining the data to build the models:-

The modeller can, in the same manner as a knowledge engineer, sit down with the people 

who are part of the process, and gather information on the way in which the people work. 

In an organisation which has a suitable standards or procedures manual, this can be used as a 

basis for creation of the model. Note, however, that this will be the view of management or 

of the author of the manual. This may not reflect reality and a good process engineer will, if 

working from such a manual, back it up with actual information from the people involved in 

the process. 

Obtaining the information to build the process model is a very intensive operation, and often 

the process can be accelerated by the use of some suitable technique such as ETVX (Entry, 

Task, Validation eXit), which can be distributed (for example as a form like that given in 

Appendix A). This gathers information on the entry criteria, the tasks to be performed, the 

validation and the exit criteria of a step in the process. This information can be used to build 

an initial process model after which model refinement can proceed at much greater speed as 

the people involved have an object to criticise and correct. 

A simple process can be captured in a single layer model. For more complex processes it is 

necessary to structure the model into layers, concentrating on providing the key information 

at the higher layers, with the internal structure of the processes of one layer being detailed as 

sub-processes in a lower layer. 

An example of a multiple layer process model is given in figure 2, which is one of the lower 

layers of figure 1. A complex process may need to be described by a many-layered model. 



www.manaraa.com

F
ig

ur
e 

2 
-

A
 

lo
w

e
r 

le
ve

l 
m

od
el

 
o

f 
im

pr
ov

ed
 

pe
rf

or
m

an
ce

 

re
le

a
se

d
 

sy
st

e
m

 

F
a

st
e

r 
sy

st
e

m
 de

ci
de

 o
n 

m
e

ch
a

n
is

m
 

fo
r Im

p
le

m
e

n
t 

ch
an

ge
s 

KE
Y 

C
R

¥
J
 

CC
TIV

rtY
) 

(I
te

m
s]

 

m
ai

nt
ai

ne
r 

m
e

te
ri

n
g

 

ad
d 

m
et

er
in

g 
an

d 
m

o
n

ito
r 

co
de

 
...

.. ~
 ..

..
 l 
b

e
h

a
vi

o
u

r 

ge
ne

ra
te

 a
nd

 
m

o
n

ito
r 

p
e

rf
o

rm
a

n
ce

 
si

m
ul

at
io

n 

m
et

er
in

g 
re

su
lts

 

M
a

in
ta

in
e

r 

pe
rf

 
im

p
ro

ve
m

e
n

t 
ch

a
n

g
e

 l
is

t 

e
va

lu
a

te
 

re
su

lts
 

an
d 

id
en

tif
y 

ch
an

ge
s 

tv
 

0
0

 
0

0
 



www.manaraa.com

289 

However one must always keep track of the goals and ensure that the model does not 

become too detailed. Any tool used to create process models should be able to handle such a 

hierarchy of layers. 

In a complex model it is hard to validate the mass of interactions which can occur, a problem 

met by both the process engineer and the knowledge engineer. A knowledge engineer 

would validate a complex system by running trial problems and reviewing the results with 

the expert or experts whose knowledge is built into the system. The process model analogy 

is to animate the model and check the results. A model may be animated by hand or, 

preferably, by the tool that is used for the modelling. 

A process model created in this way serves as the input to a process-based IPSE, with the 

advantage of the process matching reality, not some designer's view of how people will 

develop software. Even in the absence of an IPSE, it is possible, when the user has an 

animatable process model, to consider the engineering of processes. In addition if one of the 

goals is process improvement then one must establish a lifecycle for process engineering. 

Figure 3 reflects such a lifecycle that can be undertaken in process engineering. This natural 

step following the successful introduction of a process-based metrication scheme lies beyond 

the scope of this paper for discussion in detail. Figure 3 is included as a pointer to future 

work in this area and as an indication of some issues to be considered when undertaking 

fundamental process improvements. 

3. The Data Model 

We use an extended semantic hierarchy modelling method to develop data models for use 

with the process models described in the previous chapter. 

3.1 The modelling method 

A modelling method intended to produce a data model describing software data requires 

certain features. In what follows these features are listed and briefly justified. For a full 

exposition of the method see [ROSS89a]. For an example of an elaborate model (with 

numerous primitive metrics) constructed according to these principles see [MASC89] or 

[ROSS89b]. For synthetic metrics related to the maintenance phase see [MELL87] and 

[MELL89]. 



www.manaraa.com

F
ig

ur
e 

3 
-

A
 l

ife
cy

cl
e 

fo
r 

pr
oc

es
s 

ch
an

ge
s 

R
E

Q
U

IR
E

M
E

N
T

S
 

A
ss

ig
ne

d 
pe

rs
on

 
fro

m
 

ea
ch

 c
en

tre
 

U
nd

er
st

an
di

ng
 

e
xp

e
rt

/o
ve

rv
ie

w
 

A
gr

ee
m

en
t 

R
es

ol
ve

 P
ro

bl
em

s 
F

ee
db

ac
k 

to
 A

ct
iv

iti
es

 

D
E

S
IG

N
 

FA
IL

U
R

E
 -

E
S

C
A

LA
TI

O
N

 
TO

A
G

'1E
E 

C
E

R
TI

FI
C

A
TE

 
AU

TH
O

R
IS

AT
IO

N
 O

F 
SP

EN
D

 

D
O

C
U

M
E

N
T

 

D
es

ig
n 

D
oc

. 
(P

ro
p

o
sa

l)
 

Fl
ow

 C
ha

rt 
F

or
m

s 
(I

nf
o)

 
R

es
po

ns
ib

ili
tie

s 
R

ec
or

ds
 

In
te

rf
ac

es
 

A
n

n
rn

v
::

Il
s
 

D
et

ai
ls

 
P

os
te

r 
H

an
cl

>o
ok

s 
F

or
m

s 
(IN

S
P

E
C

TI
O

N
) 

i 

~
 

o 



www.manaraa.com

291 

i) It should be object-oriented 

Data collection will occur in a series of discrete acts, in each of which a developer records 

data on an activity they have just fmished, a module they have just coded, etc.. The objects 

that feature in software production will structure the collection activity and the recording of 

data about an object will usually be independent of recording data about other objects in 

respect of time, tools, etc.. In addition, basing the model on software objects makes it more 

intelligible to its users. 

ii) It should be hierarchic 

The degree of detail that users want from the model will vary from time to time and place to 

place. At every time and place they will want help in navigating the model and in having 

complexity hidden from them. When making decisions about which metrics to collect and 

how, they will want all the advantages hierarchy confers of inheriting high-level decisions, 

so that they need only be made once. 

iii) It should underlie Entity-Attribute-Relationship modelling 

Data recorders, data collection supervisors, database generators and data analysts will not 

always share a common view of which objects are entities, which attributes and which 

relationships. Data recorders think of themselves as recording values for attributes of an 

object they have completed. Data analysts investigating the accuracy of a predictive method 

may think of the predicted values as objects, of which the name of the entity they were 

predicting is an attribute. Customising the model to suit the data needs of differing areas 

often forces changes of semantic viewpoint towards an object. Because of this, the method 

cannot treat Entity, Attribute and Relationship as irreducible types. It must begin with more 

fundamental types from which they can be constructed. 

iv) It should allow the restriction of inherited properties 

Since entities, attributes and relationships are each hierarchically arranged, from more 

general to more special objects, there are several ways of defining inheritance of the 

connections between them. Our defmition allows some flexibility in this, so that, for 

example, specialisations of an attribute (to different data collection tools say) can be freely 

assigned to specialisations of the entity it is measuring without losing the formal control 

given by the modelling technique. 



www.manaraa.com

292 

v) It should support customisation 

The method must provide operations for adding and deleting objects that preserve the 

coherence of the data. These operations must interact consistently with the operations of 

restriction and change of semantic viewpoint described in (iv) and (iii) above, which are also 

used in customisation. 

3.2 Data models and Process models 

The aim is to have a single integrated model of the production process and the data that is to 

be collected during it In practice, the activities of data modelling and process modelling use 

the same modelling theory but they use it in different ways. Hence the development of the 

data and process parts of the model tends to progress in distinct stages and to produce a 

model with clear interfaces between the two areas. The sequence of development is 

Generic Data Model -> Specific Process Model -> Specific Data Model -> Trial 

Generic Data Model: we begin with the basic entity types Role, Process and Item (these 

are always present; in a very wide-ranging model other basic types might occur). We then 

specialise these to more detailed types (Development Role, Phase Process, Software Item) 

which may in turn be specialised to yet lower levels of detailed types. At each level a type 

inherits the attributes and relationships of its parent and has additional attributes and 

relationships assigned to it. (Note that these attributes and relationships are also objects in 

their own right and so may also be specialised.) The final result is a model containing a 

moderate number of hierarchically-arranged entity types almost all of which have unique sets 

of attributes and relationships. An example of such a model is shown in figure 4. 

Specific Process Model: process modelling begins at the level where data modelling 

ends. The leaves of the hierarchic structure created above (specialisations of Role, Process 

and Item) are the basic entity types which the process modeller uses. Each of them is 

specialised to a large number of classes. The general relationships between the types become 

specific relationships between the classes (for example, " Developer Role works in Phase 

which produces Document" might specialise to " Designer works in Design Phase which 

produces Low-level Design ", among other things). The chief differences between this 

modelling stage and the one that precedes it are: 

a) some parts of the data model will descend through several hierarchic levels. 

The process model will seldom have more than a single level of specialisation 



www.manaraa.com

293 

nJl"il EJ) Raise KI Component I DeSClibes 

,.t" t"~ I Incident I ~ I Change I, , ~ ..-, ----., ~ Softwaze ~ Hazdwaze 

Desi~s 11 t '" 
r-+ E,,,ulab!. I ~~! II D_t I ~ ~ I M;nut. I 

/ ,. t t "" !, "Specification 

I s,.t~ IIS.L'Y"omll Modul.l./' '\.1 RopodII Ma_!II Plan 1 D.n&" 

I Channel I B I ~ocess I )FO~ 

Figuxe 4- da.ta. model showing kernel (Role, ~ocess, Item) sUXIounded byeNtensive specialisations 
(8. ttzibutes not shown) 



www.manaraa.com

294 

from the data model types to the process model classes. 

b) Each level of specialisation in the data model will tend to contain only a few 

times as many objects as its predecessor. By contrast, the single level of 

specialisation of the process model will normally have dozens of specialised 

classes derived from each data model type. 

c) the whole point of specialising a type when data modelling is to be able to 

assign distinct sets of new relationships and new attributes to its children. In 

process modelling it is the meaning of a type that is specialised to many distinct 

meanings of specific classes. No new attributes are assigned to any of these 

classes. 

The [mal result is a detailed network of entity classes connected by specific relationships 

(c.f. figures 1 and 2). 

Specific Data Model: by virtue of being specialisations of data model types, the process 

model classes inherit the attributes of their types. Attributes were assigned to a type because 

it was thought feasible and sensible to consider recording their values for instances of that 

type in the environment to which the data model applies. The combined result of the first 

two stages is to produce a data and process model showing all the attributes that gmkl be 

collected against its classes. The purpose of this stage is to decide which of them Ell be 

collected. It will often happen that some of the attributes should not be collected (or not yet) 

against specific kinds of Activity, Software item, etc., because tools, management methods 

or other factors vary from area to area within the overall application domain. The inheritance 

of these classes is therefore restricted to those attributes it is desired to collect. Because of its 

level of detail, and the frequent repetition of attributes attached to different entities, the [mal 

model is much easier to browse, using a graphical display tool, than it is to display on a 

single sheet of paper. A ~ partial example of such a model (chosen more for ease of 

display than for typicality) is shown in figure 5. 

Trial: one or a few attributes that are already being collected are chosen to try out the 

model. Effort must be among them, so that staff can be told to derive their time-booking 

codes, document id's, etc., from the model, with explicit exception codes being provided for 

the use of those who cannot express what they are doing in the model's terms. Any areas 

where the model fails to describe what is actually happening will quickly call attention to 

themselves. 



www.manaraa.com

V
)
 

0
\ 

N
 

/ 
,-

&'0.' 
E

ase of aV'OidB;nee~ 
_

C
C

IIm
I 

In
 

E
n

v
h

o
n

m
e

n
t 

"'d
 

s: p.1 
O

eew
enee b

m
e 

.. 
:l ~

 5 
H

axdw
axe ,!>~se 

D
evelopm

ent sile 
.. .E ] ] ~

 
Idenhflex 

E
 .... 

"'d
 "'d

 .~ 
,.,,,,.,..; IEvent .r ... <

t. 
] 

_ 
IIHandting.;", 

II 
~ ~ .e.e ~ 

Io
n

 
I 

AC 
"
"
I
 

nA
III'I'D

Il' 
I 

I 
I 

I 
I 

E
ntrv tim

e 
•
.
 

'
"
 

I 
Sof~~~:; 

, ....... t C
"4t;.n 

I De
sig

n
 u

n
It 

'
-
-

. 

/ 
TxansS~!~: 

I Local S
 

n
n

n
r
l I 

I 
T

im
estam

p 
I 

u
r
r
-
· 

C
a tegory 

U
n

it 
2;4~:'l 

l:::.r am
 I 

....... ".r .... ;.. 
' ..... M.... 

~
 

N
am

e]-
"ftG

u
 t. 

V
exsion 

~
u
d
 

. 
I SuJlPC

l!l ~troll 
runnlllS 

. 
U

m
t 

. 
~~:3-I~::ng IV"r 

C
oc4ti.n 

I 
h

t (,v,C
 

M
od level 

S
ystem

 
P

ro
d

u
d

 S
u

p
p

o
rt 

I 
lllft.n

 

. 
. 

ru
 .nli6iG

t 
L_~U~m~·~t _

_
 -.lf1irt;;;;it;rl 

C
ategory 

• • 
• 

L
.
.
.
.
-
-

F ailw
e loea tion 

A
u

th
o

risin
g

 a
le

 

I 
F ailw

e phase 

Ploblern eause 
I 1 Nam

e 
K

eyw
oxds 

Ilnslallation d
ie

 
S

ales class 
Ploblern type 

.
. 

S
ite 

S
exial num

bex 
T

 eu
i tory 

T
itle 

.. v ~ ; -.5 <II 
E

 
.. o 

..... 
-

G
I 

"'d
 

o E
 

at 

- at "'d
 

"'d
 

.. .~ ~ >
--

lj 
s '" 
x 

~
 

G
I 

s: 
fi 

~ 
1: 

~ 
.. 

0 
.. 

... 
at 

P
o

 
P

o
_

 

in
 

.. ~
 

.... "" 

~
 

., .. 
w

j 
1

1
;1

 s ~
 

., .~ 

II :!r. 
5 E

 

~
 

rt E
 

.. '" Q 

of .. ~
 f:'I 

t!), 
f:'I 
'I

 



www.manaraa.com

296 

DAT A COLLECTION EXPERIENCE 

The preceding chapter describes a procedure for the introduction of metrics which we have 

derived from our experience in data collection. In this chapter we present a resume of the 

experiences that lead us to adopt this procedure. 

In order to explain this work and its results. we will summarise in tum 

a) the principles devised to guide the initial work and how they developed 

b) additional lessons learned about how to collect data 

Lessons learned about the metrics themselves are briefly mentioned in Appendix B. 

This is necessarily no more than a pointer to four years of work and experience. The topics 

of (a) and (b) are covered in detail in published reports [ROSS87a and b]. 

a) Initial Principles Chosen 

In what follows. we talk about the data collection and storage aspects of our work. Our 

ideas on data use have proved to be directly relevant to collection and storage and so are 

mentioned in passing. 

The principles that we chose in 1986 are listed below. After each principle is one paragraph 

describing how we saw it in 1986 followed by subsequent paragraphs discussing how our 

view of it developed during the course of our data collection work. 

i) Data collection must benefit those doing it during the lifetime of the collecting 

project. 

Description: this is not a new idea. but our way of achieving it drew on STL's research 

into data use to achieve a much more concrete solution than anything we had encountered in 

the literature previously. These ideas allowed us to present data collection as a low-level 

management tool. able to pay for itself within the project that started it. 

Experience: what we produced in '86 is best described as a specification for how projects 

collecting data could benefit from the process. It functioned admirably in motivating 

software developers to begin collecting data but was less adequate when they looked to it for 

help in doing data analysis and feedback. We had to develop it into a design of what data 



www.manaraa.com

297 

was to be fed back and how to interpret it (in effect an expert system) and a procedure for 

data feedback (in effect a process model for a data collection and analysis process that runs 

orthogonally to the software production process). 

ii) A data model, supported by a defined data modelling method, must be used 

simultaneously to structure data collection, define data storage and describe the 

data needs of analysts. 

Description: this is the natural solution to a host of interrelated data definition, selection, 

configuration-control and storage problems. As well as solving these particular difficulties, 

the data model was a force for structure and coherence in every area of technical work. 

While principle (i) is the most important from the point of view of selling data collection, 

principle (ii) is the most important as regards doing it. 

Experience: the degree of formality that we used in '86 was not really adequate even for a 

company-based collection scheme. In our multi-country project, every area where the 

method had been supplemented with informal text became a fertile source of 

misunderstandings and deviations between the database, the data collection tools, the 

collection manuals, etc.. This problem was compounded by a failure to enforce the method 

outside the site where it was devised. The method was also not good enough at hiding 

complexity from the end-users (the data providers). 

A revised method was developed over eight months at STC Technology Ltd. This kept the 

strengths of the earlier one while being flexible enough to express ALL definitions formally 

and with sufficient structure to allow information to be compartmentalised, hiding 

complexity from end-users. 

iii) Data collection must be customisable. 

Description: every software production environment is unique in what it collects and in 

how it collects it. Furthermore any given environment will change over time (especially it 

will wish to increase and standardise what it collects if data collection proves profitable). A 

collection scheme that is to cover many business units and companies must be customisable. 

Equally it must not loose the capacity to compare common subsets of data collected in 

different ways. These conflicting priorities can only be reconciled by a customisation 

method, acting on the data model and metric definitions, which is designed to allow the 

former while preserving the latter. 

Experience: the 'customisation' method we devised in 1986 may be aptly compared to 



www.manaraa.com

298 

that of a builder who supplies a fully-furnished block of flats to all customers and invites 

those whose requirements were more modest to put up 'no entry' and 'don't touch' signs on 

all unwanted rooms and items of furniture. The navigational difficulties of the would-be 

purchaser of a one-room flat, whose bed, bedside table, chair, desk, bookcase and 

washbasin are scattered throughout this multi-storey structure, are an apt metaphor for the 

problems data providers had fmding the measures they had agreed to collect oil our 

cumbrous, heavily scored-out forms. 

As well as revising the data definition method (see (ii) above), we revised our approach to 

customisation so that all data collection tools, forms, documents, etc., are fully configurable 

(i.e. deleting an object in the data model must cause corresponding deletion or rewriting of 

references in tools, manuals, ... ), hiding all trace of customisation from the users. 

iv) The handling of data collection acts must be governed by a defined procedure 

which stresses verification through feedback. 

Description: this principle is complementary to principle (i). Effective verification of 

collected data can only be done by its providers and must be integrated with collection. 

Experience: in practice, verification took two stages, not one. Our initial ideas on how to 

verify data were good at detecting non-obvious errors when no gross errors were present. 

The addition of a preliminary stage using distinct techniques to detect and correct gross 

errors makes the whole process much more efficient. 

v) Setting up a data collection scheme needs a defined procedure covering 

motivation, definition and advice 

Description: the stages of putting a scheme in place must be worked out and their effort 

cost known. The presentations introducing the concepts to potential data providers must 

answer the usual doubts and warn against the obvious pitfalls. 

Experience: our ability to sell the idea was good. We learned painfully that the ability to 

sell the idea and the ability to do it must be kept in step. This is especially true in 

collaborative projects where the relative speed with which the partners complete 

interdependent parts of a single data collection scheme may vary greatly. Except when the 

data to be collected is your own, it is better to be slow in publicising a data collection project 

than to risk a long delay when halfway through installing a data collection scheme because 

the next necessary item is not yet completed to the required qUality. Such delays are very 

demotivating to your data providers. 



www.manaraa.com

299 

b) New Lessons Learned about How to Collect Data 

Armed with our first version of the above guidelines, we sallied forth to persuade (mainly 

UK) software producers to collect data. We learned a great deal. One important lesson 

concerned the problems of managing collaborative projects of the kind created by the 

ESPRIT or Alvey initiatives. The difficulty of redistributing responsibilities once assigned 

and the length of time needed to get authorisation for changes to the initial plan meant that 

detected and solvable problems often could not be rectified. This compounded the expected 

initial difficulties of working in multi-company, multi-cultural projects. We will not discuss 

these difficulties further in this paper, but would wish the reader to bear them in mind when 

comparing the actual results of the REQUEST and SWDL projects with what should (and we 

trust will) happen in a company-based collection scheme. 

Some of our technical experience has already been expressed in the later paragraphs of the 

items of section (a) above. Those technical points we learned that were not simply 

developments of our ideas but corrections or additions to them are listed below in (rough) 

order of importance. 

1) It is useless to collect large volumes of data on paper 

A data collection scheme that can rely on paper forms for data recording and on text 

documents for definitions of the customised data model and for guiding verification analyses 

is a data collection scheme that is too small and simple to justify a project for setting it up. 

Such a scheme can be run but it will not advance the state of the art. Tools are essential to 

gather data from different projects in different environments. 

2) A scheme starts not by collecting data but by transcribing it 

Every production unit into which we tried to import a general data collection scheme already 

had historical data held in a variety of databases. It also had data currently being collected on 

forms and data currently being generated by compilers, static analysis tools, automatic time

booking systems, etc .. A provider could only gradually be weaned off these multifarious 

systems and onto a single data entry system and then only if the new system could efficiently 

accept data from the earlier repositories. In the early stages, most data "collection" was in 

fact data transcription. 



www.manaraa.com

300 

3) Define the process model, then the metrics 

In practice, this will be an iteration (process model -> process metrics (mainly effort) -> 
process model revision -> metrics -> ... ) but the process model must come first. You must 

get a grip of what you are doing before trying to measure how well you are doing it. 

The mistake we made was in thinking "We are a metrics activity. Therefore we must tell 

people to define and collect metrics" whereas we should have told them to define their 

process, with part of this defmition being the attributes of the objects thus modelled (i.e. the 

metrics) and the exit criteria for the processes (including the need to collect metrics on the 

process and on the items it had produced). Our failure to highlight process modelling as the 

essential first step meant that often the people we persuaded to join the collection scheme 

began eagerly to customise our data model, halted when they discovered the lack of their 

own process model and remained halted. 

An important secondary discovery concerning the relationship between metrics and process 

models was our realisation that the collection of process metrics could be made to drive the 

refinement of a process model. When a business unit attempted to design a process model to 

structure its activities, a quick initial design of a "plausible" model was always followed by a 

long period of refinement, ironing out inconsistencies between teams and finding areas 

where the "plausible" model did not in fact capture what was being done. This refmement 

period was greatly speeded up, and its cost reduced, if effort booking codes were 

constructed from the phases and activities of the current model, with an exception code for 

those unable to express the work they were doing in the model's terms. This use tests the 

model as no review can. Those who book time to the exception code can be interviewed and 

the model revised or better explained as appropriate. 

4) Technology changes during a long-term collection scheme 

The concepts devised to address a given problem will usually last the lifetime of a project 

(and a lot longer) if they were correct in the first place. By contrast, the ideal delivery 

platform for the tools that a project builds to implement these concepts may change between 

the start of a project to define a data collection scheme and the introduction of the scheme 

throughout a company several years later. If a project's tools need to be used outside the 

project and if motivating such use is a major criterion of a project's success (both of which 

are very much the case for metrics projects) then the developers must survey what packages, 

hardware, etc. will be available in the latter half of the project and plan to build their tools 

upon them. The project management must be flexible enough to allow this. We suffered 



www.manaraa.com

301 

through not foreseeing this. 

5) Target and Prediction data is not the same as Actual data 

The interpretation placed on the value that a metric achieves in practice often depends on 

what value for that metric was targetted by management or predicted by developers. 

However targetted or predicted values are not the same kind of data as actual values. 

Considerable subtlety is needed in the design of the data model to avoid the twin pitfalls of 

capturing this data in an unnatural way or making a cumbersome extension to the model 

solely to represent it. After trying several unsatisfactory solutions, we decided to treat a 

target or prediction as an entity in its own right. One of the attributes of this entity was the 

name of that attribute of which a given target or prediction was a hypothetical value, and its 

one relationship pointed to the entity instance whose value it predicted or targetted. This 

solution proved ideal both as regards collection and as regards storage. 

Conclusion 

The paper has presented a procedure and outlined a set of associated methods for a data 

collection scheme. This is based upon the experience we have gained in extensive data 

collection exercises, building on our failures and our successes. These ideas have been used 

to introduce data collection into major areas within our corporation, and have been very 

effective once the basic principles have been grasped. 



www.manaraa.com

Phase 

302 

APPENDIX A 

Process Infonnation Capture Sheet 

Development route Information 

Sub Activity Area Planning! Product Production/Quality/ Monitor 

Activity Name 

EntIy Criteria 

Validation 

Exit Criteria 



www.manaraa.com

303 

APPENDIX B 

The following is a list of attitudes to particular metrics that we acquired during our work. A 

supporting reference is listed after each remark. 

i) Any size metric is useful. Any two size metrics will be highly correlated with 

each other but both are worth collecting because components that do not show 

the same relationship between size metrics as their fellows are often worthy of 

investigation. [ROSS87a] 

ii) Simple infonnation-flow metrics are useful both in collecting and in diagnosing 

anomalous items. However we have not found that the Kafura and Henry 

synthetic metrics based on them add any information when applied to our data. 

["An Evaluation of some Design Metrics", Barbara Kitchenham, Lesley 

Pickard and Sue Linkman, for publication in the Software Engineering 

Journal] 

iii) The software science claims for the Halstead metrics were wholly contradicted 

by our studies. Halstead primitives (operator and operand counts) were like 

other size metrics only harder to collect. ["M. H. Halstead's Software Science

a Critical Examination", Gillian Frewin and Peter Hamer, Proc. 6th Int. S.E. 

Conf., Sept. 82, pp 197 - 206] 

iv) The metrics used to measure a program's control structure must be changed or 

extended when the complexity of a problem is encoded as data rather than as 

control structure (programs driven by look-up tables, etc.). A complexity 

metric (or group of metrics)will be useful only within a given house style of 

program development unless it measures data structure or data flow 

complexity and control flow. Data structure and data flow metrics can only 

practically be collected (outside research projects) by tools. [Humphries, CSR 

Software Reliability and Metrics Newsletter, 1987] 

v) Subjective metrics (subjective complexity, quality, etc.) are unreliable for the 

preliminary identification of anomalies but are very useful during the diagnosis 

of an anomaly's cause. [Barbara Kitchenham, REQUEST Report R1.8.13] 



www.manaraa.com

[BOEH81] 

[MASC89] 

[MELL87] 

[MELL89] 

[ROSS89a] 

[ROSS89b] 

304 

REFERENCES 

Software Engineering Economics 

Barry W. Boehm 

Prentice-Hall, Inc. 

Data Model Poster 

R3.2.6 REQUEST/STL-bmrn/112/S3/DC-RP/Ol 

Barbara Mascetti, November 1989 

Modelling the Support Process, Peter Mellor, September 1987 in 
Measurement for Software Control and Assurance 

ed Kitchenham and Littlewood, Elsevier Applied Science 

Chapter on Maintainability in Scenario for COQUAMO-III 

R1.7.7 REQUEST/fCU-pm/OI6/Sl/QM-RP/04 

Peter Mellor, June,1989 

Data Model Design Principles 

R3.2.9 REQUEST/STL-nfr/l10/S3/DC-RP/OO.5 

Niall Ross, October 1989 

High-level Data Model Design 

R3.2.5 REQUEST/STL-nfrI111/S3/DC-RP/01.2 

Niall Ross, November 1989 

[ROSS87a, b) Initial Contact Presentation, Agreement Visit Presentation 

Niall Ross and Elaine Burgess 

SWDL Reports SWDUCOLL/lCP, SWDUCOLUA VP 

(see also references given in these two documents) 



www.manaraa.com

15 
PROCESS SUPPORT ENVIRONMENTS 

AND THEIR APPLICATION TO LARGE SCALE SYSTEMS 

PETER WESTMACOTT 
STC Technology Ltd 

Copthall House, Nelson Place, Newcastle-under-Lyme, Staffs ST5 1EZ 

ABSTRACT 

Process modelling, and the execution of active process models, provides a sound basis for 
the exercise of control over large-scale projects. This paper describes some of the research 
work carried out under the Alvey IPSE 2·5 project, and the potential for exploiting this 
research as the basis for large scale "process support environments". 

Key features are the integration of management and technical activities, the concept 
of a "plan" as an instantiation of a "method", and the ability for the process model to 
evolve over time to take account of changing requirements, both managerial and technical. 

THE IPSE 2·5 PROJECT 

Objectives and Scope 
The IPSE 2·5 Project is being carried out under the Software Engineering Strategy of the 
UK Alvey Programme [1] by a consortium comprising STC Technology Ltd, International 
Computers Limited, the University of Manchester, Dowty Defence and Air Systems Lim
ited, SERC Rutherford Appleton Laboratories, Plessey Research Roke Manor Limited 
and British Gas pic. The project lasts for four years, finishing at the end of December 
1989. (More information on the project may be found in references [2], [3] and [4].) The 
objective of the project is 

"To produce an IPSE and evaluate its effect on the productivity and quality 
of systems development as measured by the costs of production and mainte
nance, by providing ... support for rigorously defined development processes 
which integrate management activities and development activities ... " [5] 

305 



www.manaraa.com

306 

The scope of the project included a number of other aspects which should contribute 
to this increased productivity and quality, but this paper is concerned primarily with 
"rigorously defined development processes." 

Two concepts at the heart of IPSE 2·5 are integration and process modelling. Inte
gration is seen as a key factor in achieving increased productivity by eliminating unnec
essary and error prone transfer of information, particularly where the transfers involve 
human intervention. Process modelling is seen as a key factor in achieving integration 
in that the full potential for integration can only be realised when the total process is 
understood, and this requires a formalisation, or a model, of the process. (Of course we 
never understand the total process, and so we never achieve full integration; what matters 
is that the process is understood as far as is appropriate and possible at any point in 
time.) 

The process under consideration is described using a process modelling language 
(PML). This model is then interpreted by a process control engine (PCE), to provide a. 
dynamic environment for those elements, human or mechanical, participating in the ac
tual process as described. The capabilities of the PCE include the ability to conununicate 
with users and tools (the participating elements), the storage and retrieval of data objects 
(which may be process objects or product objects), and the ability to support change to 
the process definition itself, such change being under control of the same process model. 
An instance of IPSE 2·5 consists of the PCE, the PML, and a process model defined in 
PML. 

THE PROCESS MODELLING LANGUAGE 

The roots of PML are in research done in the fields of requirements modelling (specifically 
RML [6]) and conceptual modelling languages. The role is the fundamental object in 
the model; it represents an encapsulation of resources and behaviour-one of a number 
of concurrent threads of activity carried out by people or machines performing actions 
which contribute to the process. Conununication and synchronisation with other roles is 
achieved through interactions, which are objects with the behaviour of conununication 
channels. A role operates on its own set of data entities-the resources of the role. These 
resources are private to the role, although they may be made accessible to other roles 
by being passed through interactions. The behaviour of a role is constrained, and the 
correctness of the executing model is checked, by assertions defined over the state of a 
role. 

This overall structure is indicated diagrammatically in Figure 1. 

Whilst PML is not an object oriented language in the usual sense, it does have 
some of the characteristics of such languages; it has classes and inheritance (see below), 
and the role is an object, encapsulating its state and responding to external stimuli or 
messages (the interactions it has with other roles) . PML is a strongly typed language, and 
in particular, the type of a role determines the interactions in which it can participate. 



www.manaraa.com

307 

Role 

Action-+-" 
1----1- Entity 

Figure 1: PML Concepts 

Classes and Inheritance 
PML is a class-based language with inheritance. There are four principal classes in PML: 
Role, Interaction, Action and Entity. The significance of the principal classes is that they 
have different semantics, which are understood, and acted on, by the PCE. Each of these 
classes has a (fixed) set of predefined property categories. Subclasses of the principal 
classes have definitional properties defined in those property categories, and instances of 
the classes have factual properties (values) associated with the definitional properties. 

The class inheritance concept allows the development of generic process models, 
which may be specialised for particular purposes. To take a simple example, we can 
consider a set of Roles which together define, in general terms, the preparation and 
publication of a document. Some or all of these roles (and the associated Action and 
Entity classes) might then be expanded to define the process of producing a conference 
paper. There are two important points to note here; firstly, we have a form of reuse, 
reducing the amount of duplication required in producing similar parts of a process model. 
Secondly, the concept of inheritance (as defined in PML) ensures that other parts of the 
model which only need to know that this is a document production exercise (a library 
role for example) can treat it as such, while those that need to understand the specialised 
aspects can get the benefit of that knowledge. This provides a very powerful abstraction 
concept which is essential in ensuring that information can be used for different purposes 
without being replicated. 

A class may be instantiated many times. Thus we may have a Role class defined 
(say Author) and have many instances of that class (one for each document which is to be 
produced). Similarly, there would be an appropriately defined Entity class for Document, 



www.manaraa.com

308 

and each instance of the Author role would produce an instance of this Entity class. 

Persistence and Change 
It is a pre-requisite of a system such as IPSE 2·5 that the process model should not 

be something which is invoked on demand, given some data and expected to supply a 
response. The model is a continuing representation of the on-going process, and does not 
terminate as long as the project (department, corporation, ... ) is in existence; it is what 
we refer to as a persistent process. 

Because of this continuing existence, which may span several years, it is of the 
utmost importance that features are built into the PML to allow the model to evolve
whether in an additive way, when new features are required, or to modify or correct 
existing aspects of the model. These language features have been designed to ensure that 
such change is both possible and controllable. 

External Communication 
People are as much part of the process as machines. The approach adopted is to represent 
a person by a "user agent", a pseudo role which is conceptually and syntactically the 
same as any other Role, but with its behaviour predefined rather than being described 
in PML. Other roles communicate with the user agent, and hence with the user, through 
interactions, according to a well defined protocol. For convenience these interactions are 
wrapped up in predefined actions which hide the protocol from the PML writer. This 
recognition of the user agent as a separate object allows people to be represented in 
the process model-the user agent "stands in for" the person. It also means that each 
user, through his or her user agent, may interact with (participate in) a number of roles 
simultaneously, and roles may be transferred from one user to another. 

Tools are handled in the same way as users-so we have the concept of a role 
communicating through interactions with a "tool agent" which in turn understands the 
way in which it can communicate with the tools wherever they may be. This allows us to 
interface with existing external environments and the tools which they support, rather 
than having to demand that yet another set of tools be generated for use on the IPSE. 

THE PROCESS CONTROL ENGINE 

The Process Control Engine provides the environment which supports the execution of 
the process model. This has to include support for: 

• the definition of the process model in PML (including modification of existing 
models, both statically, implying support for conventional reuse of components, 
and dynamically, while the model is active); 

• storage of this process model definition, and the states of the executing roles; this 
includes not just the "process related information" (plans, methods, milestones, 



www.manaraa.com

309 

etc.), but also all the "product data" (requirements statements, designs, code, user 
documentation, etc.) manipulated by the model. 

• interpretation of the model (including scheduling the interactions between roles, 
synchronising roles where necessary); 

• communication with end-users (who may be playing more than one role at a time), 
in a location-independent and workstation-independent way; 

• invocation of and communication with tools; 

• general background support functions such as monitoring the progress of the models 
and of the peE itself, peE maintenance and diagnostics, installation and bootstrap, 
etc. 

The architecture of the peE reflects the concepts of PML; role instances (including 
user agents and tool agents) are mapped onto processes. The execution of a role is the 
execution of the process; interactions are messages passed between processes, and the 
agents (which are specially programmed "roles") are the access points to and from the 
outside world. This architecture is shown, in a simplified form, in Figure 2. 

Vser agents are supported by a "VI Server" running on a workstation and providing 
a window management capability reflecting the role and action structure of PML. It is 
important to note the need for a good windowing system, which gives the ability for the 
user to select what he is to do from a number of different contexts, and to switch between 
activities without having to terminate each one in turn. This reflects the multiple roles 
with which the user may interact (via his user agent), and supports the PML concept of 
the influence that he may have over the behaviour of those roles by the way in which he 
chooses to interact with them. 

Tool agents are supported by Tool servers running on the system in which the tools 
are to execute (which may be the same system which is hosting the peE, a workstation 
supporting the IPSE VI, or any other networked machine). The tool agent provides a 
mapping between PML concepts and an IPSE tool protocol; a tool server understands 
the protocol and how to obtain the desired effects (such as initiating tools, passing infor
mation to and from tools, etc.) for its particular environment. 

Since the process model does not terminate, but is continually evolving, we need 
to support the roles with some form of persistent processes; similarly the entities in the 
model are ideally stored as data objects in a typed persistent object store. The IPSE 2·5 
peE is built on a development of PISA (Persistent Information Space Architecture) [7], 
which is extended to give the concept of persistent processes. 



www.manaraa.com

Interaction 

tool 
server 

c:=::::::1D 
tool 

310 

peE 

Figure 2: peE Architecture 

UI user 
Server 



www.manaraa.com

311 

MANAGEMENT SUPPORT 

If we exclude the personnel or "man-management" aspects, management is largely about 
planning, resourcing plans, monitoring progress against plans, and taking corrective ac
tion when shown to be necessary by the monitoring. 

Within software projects, the type of plan, the way it is resourced, and the sort 
of monitoring which is possible, directly reflect the technical methods being used. For 
example, the plan for the development of a system using an iterative rapid prototyping 
approach, will be very different in form from the plan for a conventional specify-design
code-test method. Within IPSE 2·5, a technical method is a collection of interacting Role 
classes. A resourced plan is a collection of the corresponding role instances, allocated 
to people. Thus we represent a plan as an instantiation of a method, rather than as 
some separate object completely outside the development process; the plan is in fact the 
executing process model. This concept is the key to the full integration of management 
and engineering activities in IPSE 2·5. 

In order to support this view, we need some means for representing the organisation, 
so that the roles may be allocated to staff in a sensible way, and to provide a context 
for delegation and reporting structures within the model. This is an area which is not 
predefined in IPSE 2·5. Rather it may be seen as just another aspect of the total process 
model. Significant effort within the project has however been put into developing a 
general, specialisable, and realistic process model for management support (PMMS), to 
provide a basis for evaluation of the concepts. 

APPLICABILITY TO LARGE SCALE PROJECTS 

There are two very different meanings of the term "large scale system" which we are 
interested in here. On the one hand there is the large scale product, and on the other, 
the large scale project. 

The large scale product is characterised by size (which for a software system, could 
be lines of code, bytes of memory consumed, number of modules, etc.) or by capacity 
(number of users supported, amount of data controlled, etc.). The large scale project 
may be characterised by the number of people working on the development or by the 
time taken to develop. 

For nearly twenty years now, development systems such as CADES [8],[9] have been 
addressing the engineering problems faced by large scale projects developing large scale 
products. Management support systems and tools address the problems of managing large 
scale projects. Process Support Environments, by emphasising integration of support for 
management and engineering activities, address both together, thus making the process 
support environment concept particularly appropriate for large scale systems. 

The key areas in which the process support environment approach should benefit 
large systems developers are listed below. 



www.manaraa.com

312 

Understanding the Process. The most immediate benefit is that the act of mod
elling the process fiushes out a lot of detail, and forces an understanding of what actually 
happens (and what is intended to happen, and how far these two are the same). Incon
sistencies and omissions in existing procedures are exposed and can be corrected. The 
formality of the modelling language does not allow such problems to be glossed over 
lightly. 

Conformance to rules. Conformance to Quality Standards, Procedures Manuals 
etc., is achieved by embedding those rules in the process model. This eliminates the need 
for spot checks (which may not be enough anyway), or rigorous checks by third parties 
(which can be too expensive and disruptive), by ensuring that things can only be done in 
accordance with the rules. Of course there is always the situation of "the exception that 
proves the rule"-the case where it is necessary for tactical reasons to break the rules. 
This can be achieved by allowing an alternative approach in the process model-the 
point here is that the system knows that the short cut has been taken and can record the 
fact, and indeed bring it to the attention of somebody who should know about it. In an 
extreme case, the process model can be changed "on the fiy" to cope with unanticipated 
exceptions (see "Evolution of the Process" below), but again the fact that this has been 
done can be made visible. 

Visibility to Management. Usually progress reports against plans are generated 
off-line from the development process, on the basis of reported achievements and predic
tions. In a fully integrated process support environment, preparation of progress reports 
is part of the process, and where factual information is available elsewhere in the pro
cess, reports can be derived automatically and accurately. Of course there is still the 
need for prediction and estimation, but such cases can be clearly identified and treated 
appropriately. 

Evolution of the Process. One of the problems with automated systems is that 
they tend to lock you in to what you thought you wanted. In the mean time the world 
changes, and the original ideas may be seen to be no longer appropriate. The more 
dependence that is placed on a support environment, the more important it is for that 
environment to be able to take account of change, and to evolve without having to wait 
for a nice inter-project gap. This is of course essential for projects with a life span of 
many years or even decades. Support for dynamic change has been a central theme of the 
IPSE 2·5 research, and features have been built in to the PML and the PCE to ensure 
that such change is both possible and controllable. 

Flexibility. A large project is likely to need to make use of various different techni
cal methods and disparate tool systems. It is even possible (with collaborative projects in 
particular) to have to cope with different styles of management within the same project. 
A generic environment capable of supporting different but interacting specialisations at 
the same time is clearly a major benefit here. (It would not be easy to model a process 
with all of these characteristics, but it seems evident that the effort would be well worth 
while.) 

Dissemination of information. Automated communication of information means 
that people don't have to remember who to tell when they have done something; nor do 



www.manaraa.com

313 

they need to keep looking in the library to see if there is any thing that they ought to 
be aware of. The system takes care of it. More importantly, with a greater degree of 
integration in the support environment, many forms of indirect communication become 
redundant-the information is made directly available within the system, as and when it 
is needed. 

CONCLUSIONS 

Process support environments of the sort prototyped in IPSE 2·5 provide a unique oppor
tunity to combine the benefits of management support systems and of project support 
environments, without losing the benefits of the tools and toolsets currently in use. The 
integration of management and engineering activities is seen as an essential aspect of any 
such system if it is to realise its full potential, and the formal modelling of the process is 
considered to be a prerequisite for such integration. 

At the time of writing, evaluations of the IPSE 2·5 approach are being carried 
out within the project, in a number of different contexts. These evaluations are not yet 
complete; however, our experience to date is that, while there is still a lot more work 
to be done, the concepts and architecture prototyped within the IPSE 2·5 Project are 
appropriate to, and should provide a major benefit in, controlling and executing large 
projects. 

REFERENCES 

1. Alvey Programme Software Engineering Strategy, 1983 

2. Snowdon, R.A., An Introduction to the IPSE 2·5 Project, IeL Technical Journal 
Volume 6 Issue 3, May 1989 

3. Warboys, B.C. and Veasey, P.W., Twenty Years with Support Environments, IeL 
Technical Journal Volume 6 Issue 3, May 1989 

4. Snowdon, R.A., A Brief Overview of the IPSE 2·5 Project, Ada User Volume 9 
Number 4, 1988 

5. Snowdon, R.A., Scope of the IPSE 2·5 Project, IPSE Project Document number 
060/00002 (available on request from STC Technology Ltd) 

6. Greenspan, S.J., Requirements Modelling: A Knowledge Representation Approach 
to Software Requirements Definition. Technical Report CSRG-155, Computer Sys
tems Research Group, University of Toronto, 1984. 

7. Atkinson, M.P., Morrison, R. and Pratten, G.D., Designing a Persistent Informa
tion Space Architecture, Proceedings of Information Processing 1986, Dublin 1986, 
North Holland Press. 



www.manaraa.com

314 

8. Pratten, G.D. and Snowdon, R.A., CADES-Support for the Development of Com
plex Software, EUROCOMP 1976 

9. McGuffin, R.W., Elliston, A.E., Tranter, B.R., and Westmacott, P.N., CADES
Software Engineering in Practice. Proceedings of Fou.rth International Conference 
on Software Engineering, Munich 1979, IEEE. 



www.manaraa.com

16 
OBJECT. ORIENTED DESIGN: A TEENAGE TECHNOLOGY 

IAN SOMMERVII1..E 
Computing Department, Lancaster University, 

Lancaster, LA14YR, UK 

ABSTRACT 

This paper examines the utility of object-oriented design paying particular attention to how 
effective application of the technology can reduce the costs of attaining a required level of 
reliability. The paper is made up of a number of sections consisting of a brief overview of the 
object-oriented model, a description of how the object-oriented approach may lead to more 
reliable software and a discussion of the immature aspects of the technology. The conclusion 
reflects the title of the talk; object-oriented design is a technology with potential but it is 
currently immature and must be handled with care. 

INTRODUCTION 

This paper is concerned with a relatively new approach to software design where the system is 
designed as a set of interacting objects. Each object maintains its own private state and 
operations which act on that state. The technique has derived from object-oriented 
programming which started with Smalltalk [1] in the computer-assisted learning community 
and which was developed in various artificial intelligence systems. 

It was probably fIrst brought to prominence outside these communities by the work of 
Booch [2, 3] who argued strongly that this was natural method of Ada program development 
Jackson [4] also suggests an approach which might be called object-oriented although Cameron 
[5] is careful not to do so as Jackson's approach is practical and useful rather than purist. 

In the last year or so, the technique has been the subject of a great deal of publicity and 
extreme statements have been made about how this approach reflects a paradigm shift It is 
certainly true that the approach is a promising one but it is equally true that it requires a good 
deal more development before it supplants alternative approaches. The aim of this paper is to 
present an objective view, to describe object-oriented design and discuss its advantages and 
disadvantages. 

The overall costs of large system development are dominated by the costs of system 
maintenance where changes to the system must be incorporated after it has gone into use. To be 
useful, therefore, a new approach to design must reduce the costs of system change and, in this 
respect, object-oriented design is likely to be of value. In an object-oriented design, the 
coupling between design entities is looser than in conventional approaches and there are no 
shared data areas. This means that changes to one part of the design are less likely to affect 
other design components and thus system changes are cheaper to make and to validate. 

Object-oriented design, at the moment, is a technology for design-in-the-small. It is a very 
useful technique for the design of small to medium sized systems and, as large systems are 

315 



www.manaraa.com

316 

usually composed of a number of smaller systems, it is of value in large system development 
However, it does not really address the problem of design-in-the-Iarge, namely how to 
effectively decompose a large system into interacting subsystems. Current ad hoc techniques 
must still be used for this activity. 

AN OVERVIEW OF OBJECT-ORIENTED DESIGN 

Although the term 'object-oriented design' is widely used, there is a great deal of confusion as 
to what it actually means and how it is different from other approaches to software design. 
There is also confusion about the differences between object-oriented design and object
oriented programming (covered in the following section) and object-oriented design and design 
with abstract data types. In this section, I argue that object-oriented design is simply an 
alternative way of building a real-world model in a computer-based system and discuss how 
design with data abstraction can be viewed as a specialised form of object-oriented design. 

Essentially, the role of any computer system is to model the real-world thus allowing real
world operations (such as paying invoices) to be automated, real-world predictions to be made 
and, in control systems, real-world events to be influenced. The activity of software design (for 
simplicity, I am ignoring the cases where parts of the model are implemented in hardware) 
therefore consists of identifying appropriate real-world abstractions and mapping these onto a 
computational framework which allows the system services to be implemented. At the same 
time, the designer must take into account non-functional requirements such as reliability, 
performance, user error-rate etc. 

Since the concept of a writeable memory was invented by Von Neumann, the 
computational framework in general use for software design has been based around the notion 
of representing the system state in an area of writeable memory which may be accessed by 
functional components which reflect real-world operations. As these components execute, the 
system state is updated. This model is illustrated in Figure 1 and is referred to here as a 
function-oriented model as the basic software components model functional, real-world 
activities. 

Figure 1 A function-oriented view of design 

Note that function-oriented in this context does not mean the same as 'functional' as in 
'functional programming'. In functional programming, the notion of a writeable memory has 
been discarded and the components are abstractions of mathematical expressions rather than 
models of real-world functions. This is an alternative form of real-world modelling which will 
not be discussed here. 

An object-oriented approach to design is distinct from the function-oriented approach in 
two principal ways: 



www.manaraa.com

317 

The basic abstractions are not real-world functions such as 'sort', 'display', 'track' etc. but 
are real-world entities such as 'file', 'picture' or 'radar_system'. 

State information is not represented in a centralised shared memory but is distributed 
amongst the objects in the system. Objects communicate by message passing so that one 
object may discover the state information of another object by interrogating it. 

Of course, somewhere or other, the real-world functions must be modelled. However, it is 
argued that these functions are usually associated with specific real-world entities and only 
require access to part of the system state information. In fact, the real-world entities are 
modelled by representing them as a grouping of functions and state information where the 
functions model allowed operations on the entities. This situation is illustrated in Figure 2. 

Figure 2 An object-oriented view of design 

In practice, real-world entities tend to fall into classes such as 'files', 'cars', 'terminals' etc. 
Each class has a common set of state variables and allowed operations but individual instances 
of the class are distinguished by the fact that their state variables have different values. For 
example, the class 'cars' defines that all cars have a colour, a model name, an engine capacity 
etc. and individual instances of cars such as 'red Ford Fiesta', 'black Nissan Cherry', etc. can 
be created. Thus, in object-oriented design it is normal practice to design object classes and to 
provide a means of creating individual objects from these classes. 

To illustrate the distinction between object-oriented and function-oriented design, consider 
a very simple example where it is intended to build a fIre alarm system which monitors a 
number of smoke detectors and reports to some central console the location of a ftre (as a room 
number) when indicated as a smoke detector. The system must also monitor a number of 
manually operated ftre alarms and similarly report the location when one of these is activated. 
Assume initially that each room has a smoke detector. 

In a shared-memory, function-oriented design, the system state might be represented 
using four arrays: 

Smoke_detectors: array (1 .. Number_of_detectors) of BOOLEAN; 
Detector_locations: array (1 .. Number_oCdetectors) of ROOM_NUMBER; 
Fire_alarms: array (1 .. Number_oCalarrns) of BOOLEAN; 
Alarm-'ocations: array (1 .. Number_oCalarms) of ROOM_NUMBER; 

The values in the arrays Smoke _detectors and Fire _alarms correspond to the state of the 
associated hardware devices and the values in the arrays Detector Jocations and 
Alarm Jocations are constant. To discover the location of an alarm which registers in Fire
alarms (N), the corresponding element (Alarm Jocations (N» is interrogated. 



www.manaraa.com

318 

The functions which operate on the system state might be: 

Interrogate_detectors 
GeCdetector_location 
Reset_detectors 
Interrogate_alarms 
GeCalarm_location 
Resecalarms 
ReporUireJocation 

These functions have access to all of the state information and are tightly bound to it If, for 
some reason, it is decided that detectors may cover more than one room or that large rooms 
may have more than 1 detector, then both the state model and some or all associated functions 
may have to be changed. 

An object-oriented approach to the design of this system recognises that both detectors 
and frre alarms are actually very similar and can be represented as a single object class. 

class Sensor 
attributes: Type, Status, Location; 
operations: Create, Report_status, ReportJocation, Report_type, Reset 

To model the real-world system, the appropriate number of instances of this class are created 
with their attributes initialised to the required values. For example, 

A1 :- Sensor. Create (Type -> Fire_alarm, Status -> Off, Location -> 82a) 
S1 := Sensor.Create (Type -> Smoke_detector, Status -> Off, Location -> 83) 

In this approach to design, there is a looser relationship between the modelling of the system 
state and the functions which operate on that state. Thus, there is no difficulty in coping with 
changes to the relationship between sensors and location. Each sensor knows its own location 
so changes to the system are localised. 

The intention of this trivial example is not to demonstrate the advantages of object-oriented 
design but to illustrate the different underlying design models. The principal advantage of 
object-oriented design is the fact the designs are easier to change but this cannot be readily 
illustrated using small examples as all small examples are easy to change! An argument putting 
forward the advantages of the object-oriented approach is presented in a later section which is 
explicitly concerned with object-oriented design and reliability. 

It has been suggested by Meyer [6] that the components of an object-oriented design are 
inherently more reusable than functions created during the function-oriented design process. 
This observation is sensible as reusability clearly depends on state information and the principal 
obstacle in function reuse is the need to deal with shared state. In itself, reuse should be an 
important contributor to reliability as components which are reused should be validated by their 
use in real systems. 

It is often suggested that object-oriented design is a 'methodology' in the same way that 
MASCOT [7] and SSADM [8] are design methodologies. This is nonsense. A 'design 
methodology' limits the types of abstraction which may be used in a design, defines rules 
(usually ad hoc) or guidelines about how these design abstractions interact, defines required 
design documentation and (sometimes) suggests how one view of a design may be transformed 
to an alternative or more detailed view. This section of the paper has argued that object-oriented 
design is an approach to real-world modelling which is distinct from the approach based on 
shared memory and functions and certainly can't be termed a 'design methodology'. As 
discussed later, one of the problems with object-oriented design is the lack of an associated 
design methodology. 



www.manaraa.com

319 

Objects and Abstract Data Types 

The notion of data typing as an important abstraction in system design has been recognised for 
a number of years where the type of an entity governs the operations allowed on that entity. For 
example, it makes no sense to apply a concatenate operation to an entity of type integer nor is it 
sensible to multiply two objects of type string together. 

An abstract data type is a type which is defined by the operations on that type and whose 
representation is completely concealed from other entities using that type. For example, an 
entity of type STACK has associated operations such as Pop, Push, Size etc. and the semantics 
of these operations essentially defme the type. Instances of that type have a state but that state 
may only be changed and interrogated if appropriate operations have been specified by the 
definer of the type. 

Obviously then, abstract data types and object classes have a great deal in common as 
have objects and variables of a particular abstract type. The important distinction between 
instances of abstract data types and objects is that the state of an object may be changed by 
internal operations which are private to that object whereas the state of a variable of a given 
abstract type may only be changed explicitly by operations defmed in the abstract data type 
interface specification. Therefore, variables of some abstract data types are passive and 
sequential- they respond to external commands such as 'change state', 'deliver state' etc. By 
contract, objects may be active and include internal operations which change the state of the 
object without any external operation being initiated. 

As an example of this distinction, say it was intended to model an aircraft's position 
which could be computed by cross-referencing the positions of known radio beacons. The 
appropriate beacons to be used are, in fact, a function of the aircraft's position. If the position 
is represented as an abstract data type, it must have a defined operation 'Compute jX>sition' 
which takes the appropriate radio beacons as its parameters. Which beacons to use are 
externally determined. By contrast, if position is represented as an object, it may include a 
position attribute which is constantly updated by operations internal to that object which know 
the location of radio beacons. 

Objects are autonomous and potentially active; instances of abstract data types are always 
passive and but obviously may be considered as a special type of object 

OBJECT·ORIENTED DESIGN AND OBJECT·ORIENTED PROGRAMMING 

There is an immense amount of obfuscation about the differences between object-oriented 
design (OOD) and object-oriented programming (OOP). Indeed, the confusion is sometimes 
actively exacerbated by some proponents of particular object-oriented programming languages 
who themselves do not seem to understand the differences between OOD and OOP. 

Object-oriented design and object-oriented programming are not the same thing. As 
discussed above, object-oriented design is a way of building a model of the real-world where 
state is hidden within objects and distributed across objects. Object-oriented programming 
generally means the use of an object-oriented programming language for system 
implementation. Obviously, object-oriented programming requires an object-oriented design 
but designing in an object-oriented way does not require that an object-oriented programming 
language be used. 

In essence, object-oriented programming languages are languages which allow the direct 
translation of an object-oriented design into an executable program. They include constructs 
which allow object classes to be defined and a run-time system which supports the dynamic 
creation of objects of a given class. Typically, they also include support for class inheritance 
where one class may be said to be a sub-class of some other class and thus inherit its attributes 
and operations. For example, the above definition of Sensor may be a super-class and, in some 
circumstances, it may be sensible to define sub-classes such as Temperature _sensor which 



www.manaraa.com

320 

inherits the attributes and operations of Sensor but adds an additional attribute which reflects 
the actual temperature recorded. 

It is not my intention here to discuss any specific object-oriented programming language 
or its facilities. Although inheritance is put forward as a key advantage of these languages, 
there is no standard model of inheritance so each language supports it in a different way. 
Furthermore, the individual models of inheritance are usually not orthogonal and are sometimes 
inconsistent and it is my opinion that inheritance facilities simply add complexity without 
providing a great deal of useful functionality. 

As discussed above, object-oriented design is an approach to modelling the real-world and 
an object-oriented design may be implemented, in principle, in any programming language. Of 
course, languages such as FORTRAN, Pascal and C are explicitly oriented towards function
oriented design and attempting to implement an object-oriented design in these languages 
requires a good deal of discipline on the part of the programmer. It must be recognised that, 
however careful the programmer, mapping an object-oriented design onto a function-oriented 
language is likely to introduce errors which reduce the potential improvements which can result 
from an object-oriented approach to design. 

Although languages such as FORTRAN, Pascal and C are barely adequate for 
implementing an object-oriented design, Ada is a more appropriate language. It is often the case 
that many of the object classes in a system design are passive classes and can be modelled 
using Ada packages to define abstract data types. Individual objects may also be modelled 
using packages with internal state but completely general object classes are not supported. 
Some generality is possible using generic packages to define object classes although this is not 
a completely satisfactory approach. 

Although imperfect as an implementation mechanism for object-oriented designs, Ada has 
the advantage of inbuilt support for parallelism and exception handling, standardisation, 
widespread acceptance, tool support and guaranteed longevity. Thus, for the implementation of 
large systems which have been designed using an object-oriented approach, I would 
recommend Ada as the most appropriate programming language. 

Apart from Smalltalk [1] which was developed in the early 1970s, most object-oriented 
programming languages are relatively new and have not been widely used in large-scale 
systems development. For reasons which are not important here, languages such as Smalltalk 
and Objective-C [9] involve a significant run-time overhead both in space and time and are best 
suited to prototyping and the development of relatively small software systems. Other 
languages such as C++ [10] and Eiffel [11] have explicitly attempted to avoid this run-time 
overhead by limiting their generality and may be more suitable for large system implementation. 
The use of these languages defmitely simplifies the implementation of an object-oriented design 
but their limited availability and lack of support means that choosing such a language for a large 
project represents a significant management risk. 

DESIGN FOR RELIABILITY 

Ideally, a paper like this one would report on experiences with object-oriented design for large 
system construction, compare these with other systems designed using a function-oriented 
approach and draw some conclusions from this comparison. Unfortunately, this is not 
possible. There have been few large systems built using an object-oriented approach. Those 
object-oriented systems which have been built (such as the Smalltalk programming 
environment) are so specialised that they cannot serve as a general system model. Thus, we 
cannot rely on empirical evidence to support object-oriented design but must simply advance 
analytical arguments why this approach is often an improvement over function-oriented design. 

It is assumed that the objective of the system designer is to produce a design which is as 
reliable as required. This means: 

a) As far as possible, faults should not be introduced into the design. 



www.manaraa.com

321 

b) The repair of detected faults should have a low probability of introducing or exposing other 
software faults. 

c) Software components and the system in general should be resilient in the presence of 
software faults. 

We should therefore examine object-oriented design against these three headings namely fault 
avoidance, fault repair and fault tolerance. The analysis suggests that the Object-oriented 
approach to design will probably lead to more reliable systems given that all other factors are 
the same. 

Fault avoidance 

Although a precise classification of software system faults is probably impossible to achieve, it 
is obvious that many design faults fall into one of three classes: 

1 . Misunderstood abstractions. Abstractions do not accurately reflect the behaviour of the real
world entity which they are modelling. 

2. Omitted functionality where some required functionality is accidentally left out by the 
designer. 

3 . Unanticipated state modifications. The system state is changed by one component in a way 
which is not anticipated by other components using that state. This is a particular problem 
in large system design where components are independently developed. 

Thus, to avoid design faults we should consider an approach to design against each of these 
common causes and examine whether or not it is likely to reduce faults introduced into the 
system. 

A very common fault indeed is that the designer has an incomplete or an incorrect view of 
the real-world operations and entities which are modelled by the computer system and this is 
reflected in the ensuing software design. For some classes of system, particularly those which 
include hardware components an object-oriented view is probably more natural than a function
oriented view in that the real-world entities being modelled are obvious physical things such as 
valves, sensors, thermocouples, gears, etc. It is possible to observe the real-world entity and to 
model it directly as a system object or object class. Because of this one-to-one relationship, it 
can be argued that misunderstandings are less likely so errors are less likely to be introduced. 

The same argument really applies to the problem of omitted functionality. In a function
oriented design, the designer must separate state information from functions and in making the 
separation may leave out either essential state variables, required functions or both. Because 
the object-oriented approach groups the operations and their related state information, errors of 
omission are more obvious and more likely to be detected by the designer before the design is 
complete. 

Finally, there is no doubt that an object-oriented approach leads to fewer inadvertant state 
changes. Rather than the whole state of the system being visible to all objects, each object 
manages its own state and all state modifications are localised. It is immediately obvious where 
state changes occur and the objects act as frrewalls around the state protecting it from 
interference by other objects. Thus, this class of errors is certainly reduced by adopting an 
object-oriented approach. 

Fault repair 

It is practically impossible to demonstrate that a software system is free of faults and it must 
always be assumed that faults will come to light after a system has gone into use. It is important 
that these faults should be repaired quickly without introducing new faults into the system. 
Fault repair therefore relies on the system design being easy to understand and on system 



www.manaraa.com

322 

components being independent of other components so that changes to one component may be 
made without affecting other components. 

Again, the grouping of relevant state and operations which is an essential part of object
oriented design leads to software which is more amenable to change. Objects may be 
considered as stand-alone entities without reference to other parts of the system and thus may 
be understood by the system maintainer. Understanding is also simplified because the 
operations associated with the object are likely to map directly onto real-world operations. 

Changes to an object are local to that object and are unlikely to affect other objects in the 
system. In a function-oriented approach, changes to one function often require changing state 
information and this can have unanticipated side effects. Such side-effects are much less likely 
where all changes to a part of the state are made in one place and controlled by a known object. 
Thus, fault repair is unlikely to introduce new faults elsewhere in the system. 

Fault tolerance 

A fault tolerant system is a system which can continue to operate in the presence of faults and, 
again, the distribution of state information which is inherent in an object-oriented approach is of 
value. In a situation where all of the system state is accessible by the functions manipulating 
that state, an error in one of these functions can be readily propagated through the entire system 
state. This, of course, is likely to cause complete system failure. 

However, where only part of the state is visible at any time to an object, only the state 
within that object may be damaged in the event of an error. Damage is not likely to be 
propagated throughout the system thus improving the overall probability that the system can 
continue to operate in the presence of an error. 

The general approach to fault tolerant software involves detecting a software fault by 
applying predicates to the system state. If the evaluation of these predicates suggest an anomaly 
two alternative approaches are possible. 

The system state may be explicitly modified to same known 'safe' state ignoring the 
operation which caused the fault and then continuing execution in some degraded fashion. 

The system state may be restored to its state before the fault occured and some alternative 
operation code with comparable functionality implemented. After execution of this code, 
normal operation continues. 

The object-oriented approach can be used to support both of these strategies. A duplicate set of 
'safe' state variables may be maintained within each object and, on detection of an anomaly, 
copied to the 'normal' object state variables. Because each object knows which part of the state 
it maintains, only a limited part of the state need be restored at anyone time so system 
overheads are limited. The rest of the system need not know that any error has occurred. 

The alternative strategy can also be supported using an object-oriented approach. An 
object may maintain a mirror copy of its state information so, when a fault is detected, it is 
straightforward to restore the state to that before the call. Furthermore, the object may explicitly 
use private state variables to record the existence of an error and then may reactivate itself for 
further processing. The operation selected may depend on the error record so that alternative 
code may be used for processing. 

RISKS OF ADOPTING OBJECT -ORIENTED DESIGN 

The technical arguments put forward in the previous parts of this paper suggest than the object
oriented approach to design is, in principle at least, an improvment over the more traditional 
function-oriented approach. However, adopting this approach to design and system 
implementation does currently involve some risks and these must be taken into account before a 
fmal decision is made. 



www.manaraa.com

323 

Some of the obvious risks of adopting this approach to design are as follows: 

There is a lack of industrial experience with this approach and training costs for designers 
may be very high. Of course, training costs for other approaches to design such as 
SSADM are also high but the relative immaturity of object-oriented design means that there 
is still a considerable lack of training material. 

Although programming languages such as Pascal and C can be used to implement object
oriented design their use is not advised. Thus, heavy investment in equipment and software 
may be required to support the implementation of object-oriented design. 

• It has been observed by object-oriented designers that object decomposition is particularly 
difficult and, it may be the case that design costs with this approach may be higher than 
with a function-oriented approach particularly if experienced designers are not available. 

There are no object-oriented design methods or associated CASE toolsets which have been 
developed to the same level of maturity as MASCOT [7], Structured Design [12], SSADM 
[8], etc. Design methods are of little value to talented and experienced designers but they 
do assist inexperienced designers and they do define standard sets of design documentation 
which are of immense value in system maintenance. Some object-oriented design methods 
have been developed [13,14] but they are mostly untried and experimental. 

Many approaches to requirements specification such as CORE [15] rely on functional 
decomposition and it is not obvious how a detailed requirements definition expressed in a 
functional style can be mapped to an object-oriented design. It is likely that the full benefits 
from this approach will only accrue when it is supplemented by a complementary object
oriented approach to requirements specification. 

It is not clear how the object-oriented approach can be combined with formal software 
specifications expressed in specification languages such as Z [16] and VDM [17]. 
Although it may well be possible to combine existing formal specification techniques and 
object-oriented design, there is a lack of experience in this area and some changes to 
specification notations may be required if active objects are to be effectively modeled. 

Some of these risks simply reflect the immaturity of the technology and it is likely that over the 
next few years methods and tool support will become available as will a larger pool of 
experienced designers. Other difficulties such as the mismatch between function-oriented 
requirements and object-oriented design will take longer to resolve and will require extensive 
changes to company practices. 

CONCLUSIONS 

The title of this paper was carefully chosen. Teenagers often show promise but are clearly 
immature and lacking in wisdom and experience. The same is true of object-oriented design. It 
is very likely that it will become the preferred approach to software design sometime in the 
future but, in the same way as structured programming took many years to be generally 
accepted so too will object-oriented design. 

In order to derive most benefit from this approach to design, it is important the object
oriented approach should not be confined to a single stage of the software process. Rather, 
object-oriented design should be supplemented by an object-oriented view of requirements and 
by using an object-oriented programming language (or, at least, a language with some object 
implementation facilities, like Ada). We can expect to see design methods mature and existing 
methods will be adapted to support the object-oriented approach. New developments in 
specification languages will also take place to provide a formal basis for this approach to 
design. 



www.manaraa.com

324 

Teenagers have to be nurtured carefully and should not be asked to carry out tasks which 
are beyond their capabilities. Currently, we have so little experience with object-oriented design 
in large system production that its use has to be carefully controlled and it must be introduced 
incrementally into the software production process. In a large system, some subsystems might 
be designed using an object-oriented approach while others are designed using function
oriented techniques. Given that an implementation language like Ada is used, there is no reason 
why these techniques cannot be used in a complementary way. 

REFERENCES 

1. Goldberg, A. and Robson, D. (1983), Smalltalk-80. The Language and its 
Implementation, Reading, Mass.: Addison Wesley. 

2. Booch, G. 'Object-oriented development', IEEE Trans. on Software Engineeirng, 1986, 
12 (2), pp. 211-21. 

3. Booch, G. Software Engineering with Ada ,2nd Edition, Benjamin Cummings, 
Reading, Mass., 1987. 

4. Jackson, M.A. System Development, Prentice-Hall, London, 1983. 

5. Cameron, J.R. 'An Overview of JSD' ,IEEE Trans. in Software Engineering, 1986, 12 
(2), pp. 222-240. 

6. Meyer, B. 'Reusability: The Case for Object-oriented Design', IEEE Software, 1987,4 
(2), pp. 50-64 . 

7. Simpson, H. 'The MASCOT method', BCSIlEE Software Engineering J., 1986, 1 (3), 
pp. 103-20. 

8. Cutts, G. Structured Systems Analysis and Design, London: Paradigm, 1987. 

9. Cox B.J. Object-Oriented Programming: An Evolutionary Approach, Addison-Wesley, 
Reading, Mass., 1986. 

10. Stroustrup, B. The C++ Programming Language, Addison Wesley, Menlo Park, Ca., 
1986. 

11. Meyer, B. Object-oriented Software Constructure, Prentice-Hall, Englewood Cliffs, NJ., 
1987. 

12. Constantine, L.L. & Yourdon, E. Structured Design, Prentice-Hall, Englewood Cliffs, 
NJ, 1977. 

13. 'HOOD Reference Manual' Issue 3,1989, European Space Agency, The Netherlands. 

14. Seidewitz, E. and Stark, M. 'Towards a General Object-Oriented Software Development 
Methodology', Ada Latters, 1987, 7 (4), pp. 54-67. 

15. Looney, M. CORE - A Debrief Report, NCC Publications, Manchester, 1985. 

16. Hayes, I. (ed), Specification Case Studies, Prentice-Hall, London, 1987. 

17. Jones, C.B. Systematic Software Development using VDM, Prentice-Hall, London:, 
1986. 



www.manaraa.com

17 
SOFTWARE ARCHITECTURE MODELLING 

CYDNEY MINKOWITZ 
STC Technology Ltd. 

Copthall House, Nelson Place, Newcastle-under-Lyme, ST5 lEZ, UK 

ABSTRACT 

Techniques such as formal methods and object-oriented design 
allow software engineers to describe the structure and design of 
a system at a high level of abstraction. They free software 
engineers from concerns about implementation details so that the 
engineers can concentrate on the gross organisation of the data 
structures and algorithms that constitute the system. This kind 
of software architecture modelling enables software engineers to 
explore the design space of a system and to clear up conceptual 
errors and misunderstandings about a system's basic structure. 
The me too method makes use of three techniques - formal 
specification, functional programming and rapid prototyping - to 
model software architecture. This paper discusses the use of me 
too to model the architecture of part of a large software 
system that is being developed for the Esprit IMSE (Integrated 
Modelling Support Environment) project. 

INTRODUCTION 

It is general practice in all branches of engineering design to 
adopt abstraction techniques to model complex systems. In many 
cases, this involves describing certain properties of a system 
using some general purpose design language. The design 
language used depends on the nature of the system and on the 
particular characteristics of the system that one wants to 
explore. For example, an electrical engineer who is interested 
in the physical characteristics of a circuit design will use a 
modelling language whose primitives are the objects of 
electrical networks, such as resistors, capacitors, inductors 
and transistors, which are characterised in terms of voltages 
and currents. In contrast, an electrical circuit designer who 
is only interested in the functionality of a device will employ 
a language whose primitives are signal-processing modules such 
as filters and amplifiers, which allows one to describe the 
gross organisation of the modules and their behaviour without 

325 



www.manaraa.com

326 

regard for their physical realisation. 
Like the circuit designer, a software designer will want to 

call upon different languages to model the various aspects of a 
software system, including user requirements, functional 
behaviour and performance. As with circuit design, software 
designers wishing to model the functional behaviour of a 
software system will choose a language which allows them to 
describe the architecture of the software in an abstract way, in 
terms of its abstract objects and operations. 

Computing scientists have found such a language in the 
mathematics of set theory . That language allows one to define 
software objects in terms of mathematical types such as sets and 
maps, and to define operations on the objects in terms of the 
mathematical constructs of those types. 

A design expressed in a mathematical language is often 
elegant in its conciseness and simplicity. Its correctness can 
also be verified using the proof procedures that come with the 
language. Most importantly, the meaning of a correct and 
complete design expressed in mathematics is undisputable. It 
therefore serves as an excellent communication vehicle for 
members of a design team. 

The formal design methods, VDM [1) and Z [2), borrow heavily 
from the language of set theory . The functional programming 
language, Miranda [3) includes some facility for defining set 
types and constructs, although it does not support as rich a 
mathematical language as VDM and Z. However, a design written 
in Miranda is also a program which can be executed just like any 
other program. Because of this a design specification in 
Miranda can also act as a prototype of the final software 
product. 

me too [4,5) is a functional programming language designed 
specifically to support functional modelling. The primitives of 
the language are based on sets, and it contains a rich syntax 
for expressing operations on sets. Like Miranda, me too can be 
used for prototyping purposes. 

me too was conceived by Peter Henderson, and is the product 
of an Alvey funded research project involving STC Technology Ltd 
and the Department of Computing Science at Stirling University . 
A tool that supports the language has been implemented in Lisp 
and is available from STC Technology Ltd. During the project, 
me too was used extensively for the design of software for a 
number of applications, including expert systems and decision 
support systems for business applications, and for the design of 
complex architectures for simulation applications and database 
applications. It has also been used on a number of industrial 
projects within ICL [6). 

me too has been used by the author on the design of one of 
the software tools being developed under the IMSE project, which 
is an Esprit2 project investigating methods and tools to support 
performance modellers. The design of the tool will be used in 
this paper as an example to illustrate the use of me too on a 
substantial application. The example is appropriate to the 
discussion above, because it describes the design of a tool 
which itself embodies a method for describing the structure and 
performance of information systems. In this example, the me 
too description of the architecture of the tool also serves as 



www.manaraa.com

327 

a means of describing the method which it supports. 
The me too model of the design is given in later sections. 

The reader who is unfamiliar with mathematical notation might 
find the specification of the design hard going. The initial 
concepts of the design presented in Section 3 are fairly simple, 
and the reader is encouraged to browse through that part of the 
specification in order to get a taste of high-level design 
languages. As this document is also intended to be a design 
description of the software for other members of the author's 
project to study, the full specification is included. For the 
really keen reader, an appendix has been included which contains 
a summary of the notation used in the paper. 

First, the background to the work reported here is discussed 
in the next section. . 

STRUCTURE AND PERFORMANCE SPECIFICATION 

The aim of the IMSE project is to facilitate the use of advanced 
systems engineering methods throughout the design cycle by the 
development of a support environment for performance modelling 
[7]. Features of the environment are: advanced graphics 
work-stations; extensible tool-set supporting alternative 
performance modelling paradigms such as queue-networks, 
process-interaction, petri-nets; integration of tools via a 
common object management system, common graphics support, and 
shared experimental and reporting facilities; structured system 
specification providing a capability for integration with 
external design support environments. 

The IMSE project will pursue the ideas originated in the 
SIMMER project under the Alvey Software Engineering programme. 
The SIMMER project adopted a method called sp, standing for 
Structure and Performance specification, which was originated by 
Peter Hughes at the University of Trondheim in Norway. The sp 
method supports information capture and complexity analysis 
about information systems. The method can be used for sizing 
systems, but its emphasis is on support for the evolution of 
large product families during design and development. The IMSE 
project is investigating the use of sp further and is developing 
a companion software tool . 

The SIMMER project produced a prototype tool for sp [8], 
which helped to explore the fundamental principles. Since then, 
the ideas behind sp have been refined for use in a wider range 
of applications, and the time was ripe for a more formal 
approach to the specification of sp. A high level description 
of sp was given using entity-relationship diagrams. Although 
this exercise helped communicate some of the ideas, it left many 
questions unanswered, and so a mathematically-based 
specification was sought. me too was the choice of 
specification language, because of the wish to test out the 
functions defining complexity analysis by executing them on 
known examples. 

So far, a me too model has been produced that clarifies the 
established notions of sp. It will now serve as a basis on 
which to explore other notions. It has also been used as a 



www.manaraa.com

328 

design document for another prototype tool. 
The me too model of sp is presented in the following 

sections. The specification serves two purposes. It is a 
specification of the concepts underlying sp. It is also a model 
of the objects and operations contained in the accompanying 
software tool. The rationale of the concepts specified are not 
covered here. A thorough discussion of the principles of sp can 
be found in [9). 

As the name suggests, there are two sides to sp. The first 
side concerns the specification of structural attributes of a 
system. This involves giving an abstract description of a 
system in terms of the properties of the basic building blocks, 
or modules, from which it is constructed. These properties 
include the set of operations supported by a module, and the set 
of lower-level modules on which a given module depends. The 
second side involves specifying the performance attributes of an 
implementation of a module, which include the work and space 
complexity functions which describe its efficiency with respect 
to the lower-level modules, and the extent/capacity of the 
physical data/storage structures of a system, so that sizing can 
be performed. The structural side of sp is covered first. 

STRUCTURAL ANALYSIS 

A simple way of describing an information system is as a 
collection of nodes linked together in a hierarchy. Figure 2 
shows such a hierarchy for an order registration system, which 
is represented as the Bachman diagram in Figure 1. Each node in 
the system is an instance of a component of some type, such as a 
CPU or a database manager, and has a data structure, such as a 
workspace for the CPU, or records C, 01, OL and A for the 
database manager. 

In the me too model, a system is represented as follows: 

System: : 
nodes 
links 

map (NodeName, Node) 
rel(NodeName,NodeName) 

This says that a system is composed of a collection of nodes 
indexed by name, and links which describe how the nodes relate 
to one another in a hierarchy. 

A node is described thus: 

Node: : 
module : ModuleName 
data_structure: reI (DataClass, DataElement) 

It has a data structure, which is a collection of data elements 
of a given data class, for example records C, A, 01 and OL. It 
is also associated with a module, which determines what type of 
component it is an instance of. 



www.manaraa.com

329 

customers 
C 

I artAlele. I file 4 file 1 

r 

file 2 
order 

inv~tory ------6 filoS 

r 

file 3 order-line 
OL 

Figure 1. Database design for order registration system . 

an Application 
db view 

picture 

terminal files 1-5 

/line unit 

a CPU B 
Figure 2 . An order registration system . 



www.manaraa.com

330 

A module supports an information process. For the purposes 
of structural specification, one is not interested in the 
implementation details of a process, only an abstract 
description of it. At the most abstract level, one only needs 
to know about the data classes manipulated in the process, and 
the operations that are performed on the data classes during the 
process . A collection of abstract operations on data classes is 
called an abstract data type. The notion of an abstract data 
type is well known in the formal specification world, and 
corresponds to the notion of an abstract class in 
object-oriented programming. 

Unless a module is primitive, e.g. a CPU, it must itself 
call upon some subprocess (or set of subprocesses). That 
subprocess itself is supported by submodules on which the 
calling process performs suboperations. There are three types 
of suboperations: communications, processing and memory access. 
A non-primitive module will have at least one submodule on which 
it does its processing. 

In the me too specification a module is represented by the 
following: 

Module: : 
abstract data type : reI (Operation, DataClass) 
communications: set (ModuleName) 
processing: set (ModuleName) 
memory_access: set (ModuleName) 

A module has an abstract data type and a set of submodules for 
each of the three types of suboperations . Note that the sets 
will be empty for a primitive module. This property is 
expressed in me too by the following predicate. 

is-primitive~odule : Module -> Boolean 
is-primitive_module(mod) == submodules(mod) = {} 

where 

submodules : Module -> set(ModuleName) 
submodules(mod) == 

communications (mod) union 
processing (mod) union memory_access(mod) 

The corresponding predicate for a non-primitive module is: 

is_non-primitive_module : Module -> Boolean 
is_non-primitive_module(mod) == processing(mod) /= {} 

A node will inherit the attributes of its module 
specification. Figure 3 shows an example of the operations that 
might be performed on the data elements of each node, as defined 
by its module, and how the links correspond to suboperations 
defined by the modules of the nodes. 



www.manaraa.com

331 

register order 
an Application db view 

communications 

read screen, write screen lexecute program read, write, modify 
picture 

processing memo~ccess 

, workspace records C, 01, OL, A 
...--__ ---l ___ .., 

a ScreenHandler a HlghLevelLanguage a DatabaseManager 

read character, memory access 
write character 

terminal 

a CommsHandler 

memory access 

transmit "' 
16ne ; 

l·c~m·1 

processing 
processing 

I processing 
memory access 

~C U execute instruction 
~ workspace 

access 
files 1-5 

a File Handler 

memo\ccess 
transfe~ 

Uflit 

B 
Figure 3. Operations and suboperations of order registration 

system. 

In a design and development environment, a system specifier 
should be able to choose from a number of module specifications . 
These specifications, and also the specifications of systems, 
will be held in a central database, which is represented as: 

Db : : 
modules 
systems 

map (ModuleName, Module) 
map (SystemName, System) 

A system in the database that is deemed complete must have 
certain properties. We define these properties as an invariant 
on systems. For a given database db, that invariant is 
expressed as follows: 



www.manaraa.com

332 

all (s,sys) in systems(db) . 
( ( all (n,node) in nodes (sys) 

( module(node) member dom(modules(db)) ) and <1> 
( dom(data structure(node)) = <2> 

dom(abstract_data_type(modules(db) [module(node)])) ) ) 
and 
( { (module (nodes (sys) [h]) , module (nodes (sys) [l] ) ) <3> 

I (h,l) <- links(sys) } = 
{ (module(node),subm) 

I (n,node) <- nodes(sys) , 
subm <- submodules(modules(db) [module(node)]) } ) ) 

The invariant states that <1> every node in a system must be 
associated with a predefined module, <2> each node has at least 
one data element for every data class defined in its module and 
cannot contain any data elements for data classes not defined in 
its module, and <3> the relationship between the modules of the 
linked nodes in a system is the same as the relationship defined 
by the modules of the nodes and their submodules. 

There is also the following invariant on a complete module 
definition in a database. This states that every module must be 
a member of a memory chain <1> and <2> (see Figure 3), and that 
no module can call upon itself as a subprocess <3>. 

all (m,mod) in modules (db) . 
( ( is-primitive~odule(mod) or is_non-primitive_module(mod) 

and 
( ( is-primitive_module(mod) => <1> 

( exists1 anotherm in dom(modules(db)) . 
( m member memory_access (modules (db) [anotherm]) ) ) 

and 
( is_non-primitive_module(mod) => <2> 

where 

( ( (memory access (mod) /= {} ) or 
( existsI anotherm in dom(modules(db)) 

( m member 
memory_access (modules (db) [anotherm]) ) ) ) 

and 
all subm in submodules(mod) . 

( ( subm member dom(modules(db)) 
inv_submodule (db,m, subm) ) ) ) 

and 
) 

inv submodule : Db x ModuleName x ModuleName -> Boolean 
inv-submodule(db,m,subm) == 

(" subm / = m ) and 
( all othersubm in submodules(modules (db) [subm]) 

inv_submodule(db,m,othersubm) ) 

<3> 

This completes the me too model of structural specification 
in sp. The mathematical notation has enabled a simple yet 
precise description of both the concepts of system specification 
and the objects and operations of the prototype tool that 
supports it. A similar description could have been given using 
other specification languages. The advantage of using me too 



www.manaraa.com

333 

was that the invariants could be tested by executing the 
specification on sample systems and modules expressed as me too 
objects. 

The model of the performance analysis side of sp is given 
next. 

PERFORMANCE ANALYSIS 

The activity of selecting components and deciding how they 
should fit together in a system is known as configuration. The 
activity of designing a configuration with sufficient data 
storage and processing power for the intended workload is known 
as s~z~ng. The method described above supports the configurer 
in specifying the structure of a system in terms of its parts. 
sp also provides support for defining the implementation details 
used to determine a system's resource usage and workload, and a 
calculator for sizing exercises. 

Components 
The physical properties of a node are determined by how its 
module is implemented. The term component is used in sp to 
describe an implementation of a module. (Recall that nodes are 
instances of components.) A module can be implemented by a 
number of components. The components may differ in the way in 
which they represent the data classes of a module or the 
algorithms they employ to carry out its operations. For 
example, a file handler module can be implemented by a component 
that uses direct-accessing to update its files, or one that uses 
sequential-accessing. 

sequential 
access 

a FlleHandler files 1-5 

access 
file 

Figure 4. Example components. 

direct 
access 



www.manaraa.com

334 

with a component, one specifies physical attributes 
concerning the implementation. These attributes are called 
structure parameters because they define properties which the 
data structures of their instances possess, such as the number 
of fields in a record. Different implementations of a module 
may have different structure parameters. A particular structure 
parameter, extent, defines the capacity of a data structure. 

The other information specified with a component is closely 
related to algorithmic complexity and is termed a complexity 
specification. A complexity specification is a collection of 
mapping functions representing two kinds of property which 
determine the efficiency of an implementation: 

compactness determines how many data elements at the level 
of a calling process can be mapped to a unit of storage 
structure in each of the submodules which it uses for 
memory access (e.g. records to blocks) 

work complexity determines for each operation at the level 
of the calling process, how many invocations there will be 
of each operation in each of its submodules 

In many cases complexity functions must be highly 
parameterised, since the mapping can vary both with the values 
of an operation's arguments and with the properties of the data 
structure to which it is applied. 

The definition of a component in the me too model is as 
follows: 

Component 
module : ModuleName 
structure-parameters : map(DataClass,map(Name,Parameter» 
extent-parameters : map (DataClass,NumberParameter) 
compactness specification : 

map (ModuleName, 
map (DataClass, 

map(DataClass,ComplexityFunction») 
work complexity specification : 

map (tup(Suboperation,ModuleName), 
map(tup(Operation,DataClass), 

map(tup(Operation,DataClass),ComplexityFunction») 

where 

Suboperation = {"communications","processing","memory_access"} 

ComplexityFunction :: 
pars: seq(tup(DataClass,Name» 
fn : seq (Value) -> Number 

Parameter = NumberParameter IntegerParameter I ... 
NumberParameter :: 

range: set (Number) 
default value : Number 

(similarly-for IntegerParameter etc.) 



www.manaraa.com

335 

Name = String \ {"extent", "capacity"} 
Value = Number I Integer I ... 

The designer and developer now has the ability to catalogue 
components for use (or re-use) when configurating systems. The 
central database of objects that the sp tool manipulates now has 
this representation: 

Db :: 
modules: map (ModuleName, Module) 
systems: map (SystemName, System) 
components: map (ComponentName, Component) 

Once a component has been selected for a node's module, 
implementation details specific to a node can be given. By 
default, a node will inherit the properties of its component. 
So, for example, the capacities of its data elements will 
inherit the default values specified with the extent parameters 
of its components. Specific values for the structure parameters 
can be given to override the default values. Specific numbers 
can also be entered for the memory mappings of its data 
structure to the data structure of its lower-level node, and the 
calls its operations make on those of the lower-level nodes. 

This leads to a new definition for a node: 

Node: : 
module : ModuleName 
component : ComponentName 
data structure: rel(DataClass,DataElement) 
structure values: map(tup(Name,DataClass,DataElement),Value) 
capacities : ExtentVector 
extents : ExtentVector 
memory mappings: map (NodeName,MemoryMapping) 
work matrices: map(tup(Suboperation,NodeName),WorkMatrix) 

where 

MemoryMapping = map(tup(DataClass,DataElement),ExtentVector) 
ExtentVector = map (tup (DataClass, DataElement) ,Number) 
WorkMatrix map(tup(Operation,DataClass,DataElement),WorkVector) 
WorkVector = map (tup (Operation, DataClass, DataElement) ,Number) 

Resource usage 
sp performs two kinds of static performance analysis - resource 
usage analysis and workload analysis. Resource usage analysis 
determines how much storage space is required at a lower-level 
node in a system to service the demands of a higher-level node. 

The data structures of successive nodes in a memory chain 
have a special relationship. The data structure of the 
lower-level ·node becomes the storage structure of the user node 
(i.e. the higher-level node that uses the storage structure of 
the lower-level node). The extent of a data structure of a node 
defines the amount of space it uses. The capacity of the data 
structure defines how much space it has. At a top-level node, 



www.manaraa.com

336 

the extent is limitied in range by the extent parameters of the 
node's component. At a lower-level node the extent parameters 
limit the range of the capacity of the storage structure. The 
extent of a lower-level node is devolved from the extent of the 
data structure of its user and the specified memory mappings . 
In a sizing exercise, a configurer must ensure that the capacity 
of a storage structure is not exceeded by the devolved extent . 

data structure extent 

o~-o--------~----

Node 
memory mapping 

0-0- O~- 0 
capacity 

storage structure devolved extent 

\ -------,.,) V 
lower-level nodes 

Figure 5 . Memor y mappings. 

The properties of extents and capacities can be expressed by 
the i nvariant below . 

all (n,node) in nodes(sys) . 
( ( ( all «cl ,el) ,extent) in extents(node) • 

( (cl,el) member data structure(node) ) ) 
and -
« not(n member rng(links(sys») ) => 

or 

all «cl,el) ,extent) in extents (node) 
( extent member 

range (extent-parameters (components (db) 
[component(node»)) 

[cl,default_extent-parameter(»)) ) ) 

( extents(node) = 
devolved_extent(db,sys,user(db,sys,n),n) ) ) ) 

and 
( ( capacities (node) /= {} ) => 

) ) 

( ( n member rng(links(sys» ) and 
( all «cl,el) ,capacity) in capacities(node) 

( ( (cl,el) member data structure(node) ) and 
( capacity member -

range (extent-parameters (components (db) 
[component(node»)) 

[cl,default_extentyarameter()J) ) ) ) ) ) 



www.manaraa.com

337 

where 

default_extent-parameter : -> NumberParameter 
default_extent-parameter() == 

mk_NumberParameter({O, ... ,infinity},O) 

The devolved extent 
a system hierarchy is a 
structure of its user. 
following function. 

of a data structure at a lower level in 
function of the extent of the data 
The user of a node is specified by the 

user : Db x pystem x NodeName -> NodeName 
user(db,sys,n) == 

the ({ h I (h,l) <- links (sys) ; 
( 1 = n ) and 
( module (nodes (sys) [1]) member 

memory_access (modules (db) [module (nodes (sys) [h])]) ) }) 

The following function calculates the devolved extent of a 
node as the product of the extent vector of the user and the 
memory mapping defined between the user and the node. 

devolved extent : Db x System x NodeName x NodeName -> ExtentVector 
devolved-extent (db,sys,u,n) == 

Mprod(extent_vector(db,nodes(sys) [u]),memory_mapping(db,sys,u,n» 

The following function determines the extent vector of the 
user. For a user which is also a lower-level node, that vector 
will be devolved from its user. For a top-level user, it will 
be determined by the extent defined for its component overriden 
by any specific extents defined for the data elements of the 
node. 

extent vector : Db x Node -> ExtentVector 
extent-vector (db,node) == 

{ (cI,el) : data structure(node) -> 
extents (node) 

[ (cl, ell , 
default_value (extent-parameters (components (db) 

[component(node)]) 
[cl,default_extent-parameter()])] } 

The following function determines how the data structure of 
the user is mapped to the storage structure of the node. If 
specific memory mappings between data elements in the data 
structure to the data elements of the storage structure have 
been specified, then they are used in the calculation. 
Otherwise, the user's component's compactness functions will be 
applied to the properties of the user's data structure. 



www.manaraa.com

338 

memory mapping : Db x System x NodeName x NodeName -> ExtentVector 
memory-mapping(db,sys,u,n) == 

let unode == nodes (sys) [u), 
nnode == nodes (sys) [n) 

in 
{ (ucl,uel) : data structure(unode) -> 

{ (ncl,nel) : data structure(nnode) -> 
memory mappings(unode) 

[n, OJ 
[ (ucl, uel) , { } ) 
[(ncl,nel), 
let complexity function 

compactness function (db,component(unode), 
- module(nnode),ucl,ncl) 

in 
apply(fn(complexity function), 

bind(db,unode~uel,pars(complexity_function))) 
} } 

The following functions are used to retrieve a compactness 
function defined in a component for a given data class and the 
data class of a given submodule, and bind the formal parameters 
of the compactness function to the values of the node's 
structure parameters. 

compactness function : 
Db x ComponentName x ModuleName x DataClass x DataClass 

-> ComplexityFunction 
compactness function (db,c,m,ucl,ncl) == 

compactness specification (components (db) [c)) 
[m,O) -

bind 

[ucl, { } ) 
[ncl,mk_ComplexityFunction([],lambda() .0)] 

Db x Node x DataElement x seq(tup(DataClass,Name)) -> seq(Value) 
bind(db,node,el,formal-pars) 

[ if name = "extent" 
then 
extents (node) 

[(cl,el) , 

else 

default_value (extent-parameters (components (db) 
[component(node))) 

[cl,default_extent-parameter()))) 

structure values (node) 
[ (name, cl, ell , 
default_value (structure-parameters (components (db) 

[component(node))) 
[cl) [name)) ) 

(name,cl) <- formal-pars ) 



www.manaraa.com

339 

After a successful sizing exercise, the following invariant 
on a system sys will be true. 

all (n,node) in nodes (sys) . 
all «cIO,eIO) ,extent) in extents(node) 

all «cll,ell) ,capacity) in capacities(node) 
( ( ( clO = cll ) and ( elO = ell ) ) => 

( extent <= capacity ) ) 

Workload analysis 
Workload describes the amount of work offered to a system over 
some time period. Given a unit of work for each node at the 
top of a system hierarchy, expressed in terms of its operations, 
and a complete set of work complexity specifications, the total 
static work devolved by a system is the aggregated devolved 
workload of the nodes at the bottom of the hierarchy. The 
devolved work for a bottom-level node can be calculated as the 
product of the work-unit of the top-level node and the sum of 
the products of the work-matrices along each path from the 
top-level node to the bottom-level node. For a more detailed 
explanation of workload analysis see [9] . For the sake of 
completeness, the full set of functions that calculate workload 
are given below . No further explanation of the model is given, 
and it is left for the reader to digest if so desired . 

Path set(seq(tup(NodeName,Suboperation,NodeName») 

total devolved work: Db x System -> map(NodeName,WorkVector) 
total-devolved-work(db,sys) == 

{ b-: bottom-level nodes (sys) -> 
MSigma({ t : top level nodes(sys) -> 

devolved_work(db,sys,t,b) }) 

devolved work : Db x System x NodeName x NodeName -> WorkVector 
devolved-work (db,sys,t,b) == 

MProd(work unit (db,nodes (sys) [t]), 
MSigma({ p : paths (db,sys,t,b) -> 

work_multiplier(db,sys,p) }» 

work multiplier : Db x System x Path -> WorkMatrix 
work-multipler(db,sys,p) == 

MPI([ work_matrix(db,sys,h,subop,l) I (h,subop,l) <- p ]) 



www.manaraa.com

340 

work matrix : 
Db x System x NodeName x Suboperation x NodeName -> WorkMatrix 

work matrix (db, sys,h, subop, 1) 
let hnode == nodes (sys) (h), 

Inode == nodes (sys) (1) 
in 

{ (hop,hel,hel) : operations(db,hnode) -> 
{ (lop, leI, leI) : operations (db, Inode) -> 

work matrices (hnode) 
( (sUbop, 1) , { } ) 
((hop,hcl,hel),{}) 
( (lop, leI, leI), 
let complexity function 

work complexity funetion(db,component(hnode), 
- - subop,module(lnode), 

hop,hcl, lop, leI) 
in 
apply(fn(complexity function), 

bind(db,hnode~hel,pars(complexity_function») 
} } 

work complexity function 
Db x ComponentName x Suboperation x ModuleName x 
Operation x DataClass x Operation x DataClass -> ComplexityFunctior. 

work complexity function (db, c, subop,m,hop,hcl, lop, leI) --
work complexity specification (components (db) (c) 

((sUbop,m), {})-
( (hop, hel) , { }) 
((lop,lel),mk_ComplexityFunetion((),lambda() . O») 

work unit : DO x Node -> WorkVector 
wo rk=un it (db, node) == { (op,el,el) : operations (db, node) -> 1 } 

operations: Db x Node -> set(tup(Operation,DataClass,DataElement» 
operations (db, node) == 

{ (op, el, ell 
I (op,cl) <- abstraet data type (modules (db) (module(node»)) , 

(elO,el) <- data_strueture(node) ; elO = cl } 

top level nodes: System -> set(NodeName) 
top=level=nodes(sys) == dom(links(sys» diff rng(links(sys» 

bottom level nodes: System -> set (NodeName) 
bottom=level=nodes(sys) == rng(links(sys» diff dom(links(sys» 



www.manaraa.com

341 

paths : Db x System x NodeName x NodeName -> Path 
paths (db,sys,t,b) == 

if t = b then {[]} 
else 

{ [(t,subop,l)] conc p 
I 1 <- rng(links(sys) dr {t}) , 

subop <- suboperations(db,module(nodes(sys) [t]), 
module (nodes (sys) [1]» , 

p <- paths (db,sYs,l,b) } 

suboperations : Db x ModuleName x ModuleName -> set(Suboperation) 
suboperations(db,m,subm) == 

( if ( subm member communications (modules (db) [m]) 
then {"communications"} else {} ) union 

if ( subm member processing (modules (db) [m]) ) 
then {"processing"} else {} ) union 

if ( subm member memory access (modules (db) [m]) 
then {"memory access"} else {} ) ) 

CONCLUSIONS 

Promoters of formal methods and prototyping argue that the way 
to reduce software development costs and to improve product 
quality is to invest more in the early stages of development, 
thereby reducing the risk of discovering errors late in 
development when they are more costly to repair, and improving 
the likelihood of product acceptability. This argument is 
strengthened by observing how much emphasis is placed on early 
experimentation and design validation in other, more mature 
fields of engineering. 

In other engineering disciplines, mathematical analysis and 
simulation techniques are used to model various aspects of a 
system design, including functional behaviour and performance. 
Computer scientists are adopting similar techniques to model the 
different aspects of designs of software systems. 

This paper has demonstrated the use of a functional 
programming language based on set theory, called me too, to 
specify and validate the functional behaviour of software 
systems. There are other executable specification languages 
that can be used in the same way, for instance Prolog, which is 
based on first-order predicate logic [10], and OBJ, which is 
based on algebraic specification [11]. 

Apart from helping to validate a design, functional 
modelling improves one's understanding of a design. The 
formalism of the modelling techniques also helps to simplify a 
design, while communication is enhanced by the concise and 
unambiguous nature of mathematical specification. 

The modelling exercise presented in this paper improved the 
author's understanding of the basic concepts of a tool to 
support structure and performance analysis of information 
systems. The model is now being used to explore new ideas, and 
to specify further functional requirements on the tool. 



www.manaraa.com

342 

There are no hard and fast rules about applying functional 
modelling methods. They can be applied to high-level 
architectural aspects of a system, or they can be applied to 
low-level details, such as algorithms. The example in this 
paper demonstrates both modes of use. 

In a large system development, it may be inappropriate to 
model all parts of the system, especially if there are tight 
budget constraints. In that case, it would be wise to 
concentrate on those parts which are the most complex, and/or 
the most critical, as was the case in the example reported here, 
where a model was made of a key component of a large system. 

REFERENCES 

1. Jones, C.B., Systematic Software Deyelopment using YDM, 
Series in Computing Science, ed. C.A. R. Hoare, Prentice 
Hall International, 1986. 

2. Hayes, I., Specification case studies, Series in Computing 
Science, ed. C.A.R. Hoare, Prentice Hall International, 1987. 

3. Turner, D., Functional Programs as executable specifications. 
In Mathematical Logic and Programming Languages, eds. C.A.R. 
Hoare and J.C. Shepherdson, Prentice Hall International, 
1985. 

4. Henderson, P. and Minkowitz, C., The me too method of 
software design. ICL Technical Journal, Vol. 5, No.1, 1986. 

5. Henderson, P., Functional Programming, Formal Specification 
and Rapid Prototyping. IEEE Transactions on Software 
Engineering, Vol. 12, No.2, 1986. 

6. Alexander, H. and Jones V., Software Design and Prototyping 
llsing me too, Prentice Hall International, 1989. 

7. Hughes, P.H., Barber E., Pooley R., Titterington G.C. and 
Uppal C., The Integrated Modelling Support Environment Design 
Study. STC Technology Ltd. Technical Report 059/ICL229/1, 
July 1988. 

8. Barber, E., sp Users' Guide. STC Technology Ltd. Technical 
Report 059/ICL218/4, April 1988. 

9. Hughes P.H., sp Principles. STC Technology Ltd. Technical 
Report 059/ICL226/0, July 1988. 

10.Kowalski R., The relation betweem logic programming and 
logic specification. In Mathematical Logic and Programming 
Languages, eds. C.A.R. Hoare and J.C. Shepherdson, Prentice 
Hall International, 1985. 

11.Gougen J.A. and Winkler T., Introducing OBJ3. SRI 
International Technical Report, SRI-CSL-88-9, August 1988. 



www.manaraa.com

343 

APPENDIX 

Summary of me too operations and types used in the paper. 

Boolean expressions 
bl and b2 
bl or b2 
not (b) 
bl => b2 
x = y 
x /= y 
x <= Y 

Functions 
f(argl, ... , argn) == e 
f(al, ... ,an) 
apply(f, [al, ... ,an) 

Conditional expressions 
if b then el else e2 

Local expressions 
let xl == el, ... ,xk ek in e 

Sets 
{el, ... ,ek} 
{} 
sl union 52 
51 diff 52 
x member 5 
the (5) 
{ e I x <- 5 } 

{ e I x <- 5 b} 

{ e I x <- 51 , Y <- s2 

all x in 5 • b 

existsl x in 5 . b 

Binary relations 
dom(r) 
rng(r) 
r dr 5 

b } 

logical and 
logical or 
logical negation 
logical implication 
equality 
inequality 
less than or equal to 

function definition 
function invocation 
function application 

declaration of local object 

enumerated set 
the empty set 
set union 
set difference 
set membership 
the element of a singleton set s 
the set of all e, where e is an 
expression which may involve x, 
where x is taken from the set s 

same as above except the set is 
restricted to those expressions 
on x, where the predicate b is 
true for x 

same as above, where e is an 
expression which may involve x 
and y, where x is taken from sl 
and y is taken from s2, and the 
predicate b is true for x and y 
- generalises to any number of 
generators 

every element x in a set s 
satisfies the predicate b 

there exists one and only one 
element x in a set s which 
satisfies the predicate b 

the domain of a relation r 
the range of a relation r 
domain restriction 



www.manaraa.com

Tuples 
(el, e2) 
(el,e2,e3) 

Maps 
{ x : s -> e } 

m[index] 
m[index,default] 

m 
[indexl,default1] 
[index2,default2] 
[index3,default3] 

Sequences 
[e] 
[ ] 
q1 conc q2 
[ e I x <- q ] 

Records 
fld (r) 
mk-<record-name> (e1, ... ,ek) 

Type specification 
T = Tl 
T {xl, ... , xk} 
T Tl I T2 
T T1 \ T2 
T set (Tl) 
T rel (Tl, T2) 

T = map(Tl,T2) 

T tup(Tl, ... ,Tk) 

T seq(T1) 

f T1 x ... x Tk -> T 

T fldl Tl ... fldk Tk 

344 

pair 
triple 

constructing a map from every 
element x of a set s to an 
expression e 

indexing a map m 
specifying a default if the map 
does not contain the index in 
its domain 

indexing a triply-nested map 

a sequence with one element 
the empty sequence 
ql concatenated with q2 
sequence generation 

selects field fld of record r 
make a record of type record-name 
with fields el, ... ,ek 

T is of type Tl 
enumerated set 
the union of types Tl and T2 
the difference of types Tl and T2 
set whose elements are of type Tl 
binary relation with domain 

elements of type Tl and range 
elements of type T2 

map from elements of type Tl to 
elements of type T2 

k-tuple, ith element is of type 
Ti 

sequence whose elements are of 
type Tl 

function on objects of types 
Tl, ... ,Tk which returns an 
object of type T 

record with k fields, kth field 
is of type Tk 

Auxiliary functions 
Mprod (Ml, M2) 

on matrices 

MSigma (s) 
MPi (q) 

matrix product 
the sum of a set of matrices 
the product of a sequence of 
matrices 



www.manaraa.com

18 

Mathematics as a Management Tool: 
Proof Rules for Promotion * 

J.e.p. Woodcockt 

Abstract 

We consider how the Z notation is used to produce structured 
specifications. In particular, we consider the technique known as pro
motion, and give an example of its use in the structured specification 
of a file system. We then consider how the proof of this system's cor
rectness can follow the structure of its specification. Promotion has 
traditionally been treated rather informally, and proofs of correctness 
have relied on the expansion of definitions and the subsequent loss of 
structure. We formalise the notion of promotion, and observe that 
it is a kind of data refinement calculation. We prove that promotion 
is monotonic, and that it distributes through the major specification 
combinators: disjunction, conjunction, and the precondition calcula
tor. Finally, we apply our results to the proof of the file system. 

1 Introduction 

It has long been recognised that in the development of large, important 
software systems, improved management techniques can have only a limited 
effect. This is because they do not get to the heart of the matter: they do 

·Copyright © 1990 by J .C.P. Woodcock. 
tJoint Rutherford-Pembroke College Atlas Research Fellow in Computation, Oxford 

University Computing Laboratory, Programming Research Group, 8-11 Keble Road, Ox
ford OX13QD 

345 



www.manaraa.com

346 

not tackle complexity. They may be likened to rearranging the deck chairs 
on the promenade deck of a Titanic software development. They may make 
the ship look more appealing, but they do nothing to change the inevitability 
of the looming iceberg ahead. Rather, the only hope is the application of 
mathematics to provide some leverage in the fight against the complexities 
of size. 

In this paper we consider how the devices of the schema calculus in Z 
[Spivey, 1988, 1989] are used to address the problem of large-scale software 
development. Like other mathematical techniques, Z offers the manager of 
such a development the opportunity to use the power of abstraction, enforced 
through the use of modularity and data refinement. For examples, see [Hayes, 
1987; Morgan, 1990; Woodcock, 1989]. 

Conventional managerial wisdom states that proof in the development 
process should be used only in extremis: it is simply too expensive. Some 
hope is held out-as usual- that the future development of tools may some
how improve matters. We shall argue that proofs may be structured in such 
a way that the burden of carrying them out is dramatically reduced. By 
considering the theory of proofs in Z, we shall propose some techniques that 
make the prospect of routine proofs a reality. 

2 Compositionality 

The Holy Grail for those interested in proof is a compositional proof system: 
that is, one where proofs about composite objects may be built from proofs 
about constituent parts. A composite object that occurs often in Z specifica
tions is an operation defined as the disjunction of several partial behaviours. 
For example, Op may behave either as described by OPl! or as described by 
OP2 

In order to calculate the precondition of Op, we need only calculate the 
preconditions of OPI and of OP2 and disjoin them, since pre is a disjunctive 
operator 

pre Op == pre OPI V pre OP2 



www.manaraa.com

347 

The proof technique here is certainly compositional, and this is because cal
culating the precondition is simply existentially quantifying after-variables, 
and existential quantification distributes through disjunction. 

The situation is obviously not so satisfactory if we have 

since pre does not, in general, distribute through conjunction. This does not 
matter if our specifications of operations never contain conjunction, but this 
is not our experience. In Z there is an elegant device known as promotion 
or framing which is used to produce layered descriptions of systems; it was 
first worked out by Carroll Morgan and Bernard Sufrin to simplify their 
description of the UNIX filing system [Morgan & Suuin, 1984]. It is an 
important device for reducing the complexity of a specification, so it would 
be a pity if it did not yield some technique for reducing the complexity of a 
proof. As we shall see, promotion uses conjunction, so if we are to manage 
our proofs, we shall have to find a proof rule that is compositional for this 
particular use of conjunction. 

The next section presents as an example of promotion, the specification 
of an indexed file system.1 

3 An Indexed File System 

3.1 The System State 

An indexed file stores records which are indexed by keys. We introduce the 
set of records and the set of keys as given sets: for the purposes of this 
specification we need to know no more about them 

[Record, Key) 

We can model a file as a partial function, since each key in a file must identify 
a record uniquely 

1 A complete account of this specification may be found in [Woodcock, 1989), although 
it has a longer history: it was first created by Jean-Raymond Abrial, and used in lectures 
by Ib Holm SrDrensen, Ian Hayes, and Jim Woodcock. 



www.manaraa.com

348 

File ____________________ _ 

[ f : Key -++ Record 

A file is empty initially 

[Fi/dO;! 
File' 

f'={} 

Operations on a file must preserve the functionality of f 

C~Fi/' File 
File' 

Interrogations of the state will have no side-effects 

3File __________________ _ 

~ llFi/, 

A record that is in a file may be read or written, providing that the key is 
given. Reading has no side-effects 

Rea~------------------------------------
3File 
k?: Key 
r! : Record 

k? E dom f 
r! = f k? 

Writing merely replaces the existing record stored under the key 



www.manaraa.com

349 

",nt~ ____________________________________ __ 

LlFile 
k?: Key 
r? : Record 

k? E doml 
f'=I(Jj{k?~r?} 

A record may be added under a new key 
Ad~ ______________________________ __ 

LlFile 
k?: Key 
r? : Record 

k? fj. dom 1 
f' = 1 U {k? ~ r?} 

Finally, a record stored under an existing key may be deleted 

Deleteo ____________________ _ 

LlFile 
k? : Key 

k? E dom 1 
f' = {k?} 4.1 

3.2 Errors for Individual Files 

So far we have described only partial operations on particular files : we have 
specified what happens in successful operations. We must continue our de
scriptions to cover every eventuality, if we are to present a robust interface to 
our users. To do this we must carry out some investigation into the precon
ditions of our operations; that is, to which starting states do our descriptions 
apply? For example, the Add operation will add a new record under a new 
key in an existing file. If Add is unsuccessful, then an error report will be 
given. The possible reports are described by the following free data type 

Report ::= Ok I KeyAlreadylnFile I KeyNotInFile 



www.manaraa.com

350 

The errors on named files always involve a key and a report 

Error ______________________________________ __ i3File 
k?: Key 
reply! : Report 

There are two sorts of errors that can arise on operations on individual files: 
the key might not exist when it should; and the key already exists when it 
shouldn't 

KeyDoesntExist ______________________________ _ 

Error 

k? ¢ dom! 
reply! = KeyNotInFile 

KeyExis~ ________________________________ __ 

Error 

k? E dom! 
reply! = KeyAlreadylnFile 

Successful operations always reply in the same way 

Now we can describe the total interface for individual file operations 

Read - (Reado 1\ Success) V KeyDoesntExist 
Write - ( Writeo 1\ Success) · V K eyDoesntExist 

Add - (Addo 1\ Success) V KeyExis~ 
Delete - (Deleteo 1\ Success) V K eyDoesntExist 

These descriptions have been built up in a structured fashion from small 
components. 



www.manaraa.com

351 

3.3 Named Files 

Now we consider named files; names are drawn from the set 

[Name] 

The file system contains a number of named files, with each name referring 
to at most just a single file, and a set of open files, all of which must be 
known to the file system 

FS~ __________________________________ __ 

Is : Name +t File 
open: P Name 

open ~ dom Is 

Initially, the file system is empty 

FSyslnit == [FSys' I Is' = {}] 

Operation on the the file system's state include the schema 

tl.FSys == FSys 1\ FSys' 

The operations on individual files may be promoted to operate on an open 
file within the file system by 

FSysPromote ________________ _ 

tl.FSys 
In?: Name 
tl.File 

fn? E open 
8File = Is In? 
Is' = Is E9 {In? t-+ 8 File'} 
open' = open 

The appropriate file, which must be open, is selected and updated by one 
of the operations on records in a file. The set of open files does not change. 



www.manaraa.com

352 

The promoted operations are 

FReado == (Read II FSysPromote) \ .6.File 
FWriteo == (Write II FSysPromote) \ .6.File 
FAddo == (Add II FSysPromote) \ .6.File 
.FDeleteo == (Delete II FSysPromote) \ .6.File 

4 Promotion and Abstraction 

Promotion, as we have seen, is a way of taking the definitions of operations 
defined in a local context, and putting them into a larger, global context. 
In our example, the local context was simply an anonymous file; the global 
context was a named file within the file system. The details of reading, 
writing, adding, and deleting were all most conveniently described locally, 
without reference to other files in the system. 

Promotion must satisfy an intuitive definition: a promotion is simply 
the translation of a local description into a wider context, without changing 
the local description. This local description is an abstraction, providing an 
abstract data type with its attendant operations. It provides a layer of the 
system description upon which we can build a more elaborate specification 
which captures more system properties. We can picture these layers in Fig
ure 1. The outermost layer is the interface that we present to the user. We 
can enrich the system interface with new operations, such as Create, Destroy, 
Open and Close, all of which are operations on the file system, and none of 
which could therefore have been described at the inner layer. 

The important thing about promotion is that it doesn't add any further 
constraints to the local state invariant. Recall that we specified how the 
Read operation behaves for an anonymous file. The next layer can use this 
description, but must not change it; if it did, then we would be violating 
the abstraction that we have created by layering the system. In summary, 
promotion must be monotonic with respect to data refinement. 



www.manaraa.com

353 

Figure 1: The onion skins of system development. 

5 Proof Rules for Promotion 

In order that we may understand promotion better, we must formalise it and 
find some of its general properties. 

In the file system we saw an example of promoting an operation; we can 
also promote a state. 

Definition 1 A schema SProm is a state promotion from state L to state G, 
providing that SProm includes both Land G, and that it has a functional 
inverse. For such a state promotion, we can find some function f of G such 
that 

SProm I- IJL = f(8G) 

o 
The definition of state promotion ensures that the local state is embedded in 
the global state in such a way that it can be extracted uniquely: local states 
don't become confused upon promotion. It also means that the promoted 
system can be thought of as a data refinement of the local system in the 
sense of [Jones, 1986]. In the definition of state promotion, f is the retrieve 
function. 



www.manaraa.com

354 

For example, define 

FSysSProm ________________ _ 

FSys 
fn?: Name 
File 

fn? E open 
BFile = Is fn? 

This obviously satisfies the definition of state promotion. 

Definition 2 A schema DProm is an opemtion promotion from the pair 
of states !::lL to the pair of states !::lG, providing that DProm is a state 
promotion from L to G and L' to G', and that it is total with respect to L 

DProm \ G' == (pre DProm) A [j 

o 
For example, define 

FSysDProm _______________________ _ 

FSysSProm 
FSysSProm'[fn,? / fn ?'] 

{fn?} <3 Is' = {fn?} <3 Is 
open' = open 

Clearly we have that 

FSysDProm == FSysPromote 

As we shall see later in Theorem 9, FSysPromote is an operation promotion. 
In general, we talk about promoting a schema, and it will be clear in 

specific applications whether it is state or operation promotion. 
We shall now prove four useful theorems about promotion: it is mono

tonic, and it distributes through disjunction, conjunction, and pre. 



www.manaraa.com

355 

Theorem 1 Promotion is monotonic 

Proof: 

QED 
o 

VLeP:!;-Q 

V G e (P A Prom) \ L :!;- (Q A Prom) \ L 

1 VLeP:!;-Q 
2P:!;-Q 
3 PAProm 
4 P 
5 Q 
6 Prom 
7 QAProm 
8 (Q A Prom) \ L 
9 (P A Prom) :!;- (Q A Prom) \ L 

10 V L e (P A Prom) :!;- (Q A Prom) \ L 
11 I (P A Prom) \ L 
12 (Q A Prom) \ L 
13 (P A Prom) \ L :!;- (Q A Prom) \ L 
14 V G e (P A Prom) \ L :!;- (Q A Prom) \ L 

[hypothesis] 
[1 V Elim] 

[assumption] 
[3 A Elim1] 

[2,4 :!;- Elim] 
[3 A Elim2] 

[5,6 A Intro] 
[73 Intro] 

[3-8 :!;- Intro] 
[9 V Intro] 

[assumption] 
[10,11 3 Elim] 

[11-12 :!;- Intro] 
[13 V Intro] 

This is an important theorem: it says that, for any property of a system, 
there is a promoted property of the promoted system. 

Theorem 2 Promotion distributes through disjunction 

( (P V Q) 1\ Prom) \ L == (( P 1\ Prom) \ L V (Q 1\ Prom) \ L) 

Proof: 

(( P V Q) A Prom) \ L 

== ((P A Prom) V (Q A Prom)) \ L 

== (P A Prom) \ L V (Q A Prom) \ L 

[A disjunctive] 

[3 disjunctive] 



www.manaraa.com

QED 
o 

356 

Theorem 3 Promotion distributes through conjunction 

(P /\ Q /\ Prom) \ L == «P /\ Prom) \ L /\ (Q /\ Prom) \ L) 

Proof: 

(P /\ Q /\ Prom) \ L 

== (P /\ Q /\ Prom /\ 8L = f(8G)) \ L 
== (P /\ Q /\ Prom)[J(8G)/8L] 
== «P /\ Prom) /\ (Q /\ Prom))[J(8G)/8L] 

== (P /\ Prom)[J(8G)/8L]/\ 

[by definition] 

[one-point rule] 

[properties of /\] 

QED 
o 

(Q /\ Prom)[J(8G)/8L] 

== (P /\ Prom /\ 8L = f(8G)) \ L /\ 
(Q /\ Prom /\ 8L = f(8G)) \ L 

== (P /\ Prom) \ L /\ (Q /\ Prom) \ L 

Theorem 4 Promotion distributes through pre 

pre Op == (pre Lap /\ pre Promote) \ L 

Proof: 

preOp 

== pre«LOp /\ Promote) \ tl.L) 
== (Lap /\ Promote) \ G' \ tl.L 
== (Lap /\ (Promote \ G')) \ tl.L 
== (Lap /\ «pre Promote) /\ L')) \ tl.L 
== (Lap /\ pre Promote) \ tl.L 
== (Lap /\ pre Promote) \ L' \ L 
== « Lap \ L') /\ pre Promote) \ L 
== (pre Lap /\ pre Promote) \ L 

[distributivity of subst] 

[one-point rule] 

[by definition] 

[by definition of Op] 

[by definition of pre] 

[since G' not free in LOp] 
[by hypothesis] 

[since Lap includes L'] 
[by definition of tl.L] 

[L' not free in pre Promote] 

[by definition of pre] 



www.manaraa.com

QED 
o 

357 

This theorem really does describe distribution, since we could use the 
equality that pre(AL) == L to rewrite it as 

pre Op == (pre LOp 1\ pre Promote) \ pre(AL) 

which is less usable, but has a very pleasant look to it.2 

Corollary 1 The precondition of a promoted total operation is simply the 
precondition of the promotion schema, projected onto the global state 

pre Op == (prePromote)[J(OG)/OL] 

Proof: 

QED 
o 

preOp 

== (pre LOp 1\ pre Promote) \ L 

== (L 1\ pre Promote) \ L 

== (pre Promote) \ L 

== (pre Promote)[i (0 G) / 0 L] 

[Theorem 4] 

[by hypothesis, LOp is total] 

[idempotence of 1\] 

[one point rule] 

6 The Correctness of the File System 

We shall now apply our theory to the proof of correctness of the FReatkJ 
operation in the file system. First we shall calculate the preconditions of our 
basic components: ReatkJ, Success, KeyDoesntExist. 

Theorem 5 The precondition of ReatkJ is that the state invariant holds, and 
that the required key is in the file 

pre ReatkJ == [File; k? : Key I k? E (dom 1)] 

2This observation-for which I am grateful-was made by Jeremy Jacob. 



www.manaraa.com

358 

Proof: 

pre Reado 

== [by definition] 

File 
k?: Key 

3 File'; r! : Record • 
OFile' = OFile 
k? E (dom J) 
r! = (f k?) 

Continuing with the predicate part of this 

3 File'; r! : Record. 

QED 
o 

OFile' = OFile /I. k? E (dom J) /I. r! = (f k?) 

== [by definition of File] 
3/, : Key ++ Record; r! : Record. 

/' = f /I. k? E (dom J) /I. r! = (f k?) 

== [by the l-pt rule] 

f E Key ++ Record 

3 r! : Record. k? E (dom J) /I. r! = (f k?) 

== [by the l -pt rule) 

f E Key ++ Record /I. (f k?) E Record /I. k? E (dom J) 
== [since f E X ++ Y /I. x E (dom J) => (f x ) E Y) 

f E Key ++ Record /I. k? E (dom f) 
== [by the invariant on File] 

k? E (dom f) 

Theorem 6 The precondition of Success is simply true 

pre Success == [true) 



www.manaraa.com

359 

Proof: 

pre Success 

QED 
o 

== [3 reply! : Report • reply! = Ok] 

== [Ok E Report] 

== [true] 

[by definition] 

[one point rule] 

[by definition] 

Theorem 7 The precondition of KeyDoesntExist is that the state invariant 
holds, and that the required key is not to be found in the file 

pre K eyDoesntExist == [File; k? : Key I k? ~ (dom J)] 

Proof: 

pre K eyDoesntExist 

== [by definition and expansion] 

File 
k?: Key 

3 I' : Key -++ Record; reply! : Report • 

I' = f 
k? ~ (dom J) 
reply! = KeyNotInFile 

Consider the predicate part 

31' : Key -++ Record; reply! : Report • 

I' = fA k? ~ (dom J) A reply! = KeyNotInFile 
== [by two applications of the 1-pt rule] 

f E Key -++ Record A KeyNotInFile E Report A k? ~ (dom J) 

== [by definition of Report] 

f E Key -++ Record A k? ~ (dom J) 
== [by appeal to the state invariant] 

k? ~ (dom J) 



www.manaraa.com

QED 
o 

360 

II Operation I Precondition 

Reade [File; k? : Key I k? E dom f] 
Success [true] 
KeyDoesntExist [File; k? : Key I k? ft dom f] 

Figure 2: Summary of Preconditions. 

II 

Figure 2 summarises the results so far. 

Now we shall present a simple, but nevertheless useful, result about 
Success, and then show that FSysPromote is a promotion, generating as we 
do so the precondition of FSysPromote. 

Theorem 8 Success is promoted by any other operation. For any operation 
AOp on any state S, we have that 

pre( Success 1\ A Op) == pre A Op 

Proof: First, AOp is a promotion with respect to the empty state [true]: 

Thus 

QED 
o 

AOp\S 

== preAOp 
== (pre AOp) 1\ [true] 

pre( Success 1\ A Op) 

== pre( (Success 1\ A Op) \ [true]) 

== (pre A Op) \ [true] 
== preAOp 

[by definition] 

[property of schema 1\] 

[property of schema \] 

[Corollary 1] 

[property of schema \] 



www.manaraa.com

361 

Theorem 9 FSysPromote is a promotion 

FSysPromote \ FSys' == (pre FSysPromote) A File' 

Proof: 

FSysPromote \ FSys' == 

FSys 
fn?: Name 
D.File 

3 FSys'. 
fn? E open 
IJFile = Is fn? 
Is' = Is e {fn? ~ IJFile'} 
open' = open 

Continuing with the predicate part of this 

3 FSys' • fn? E open A IJ File = Is fn? A 

Is' = Is e {fn? ~ IJFile'} A open' = open 

== [by definition] 

3 Is' : Name -++ File; open' : P Name. 

open' ~ dom Is' A fn? E open A IJ File = Is fn? A 

Is' = Is e {fn? ~ IJFile'} A open' = open 

== [by the one point rule] 

Is e {fn? ~ IJFile'} E Name -++ File A open E P Name A 

open ~ dom Us e {fn? ~ 8 File'}) A fn? E open A 8 File = Is fn? 

By the state invariant on FSys, we have that Is E Name -++ File, and from 
the declaration of fn? and the state invariant on File', we have that {fn? ~ 
IJFile'} E Name -++ File. Therefore Is e {fn? ~ 8File'} E Name -++ File. 
From the declaration of open, we have that open E P Name. Thus our 
predicate is reduced to 

open ~ dom Us e {fn? ~ IJFile'}) A fn? E open A 8File = Is fn? 

== [since open ~ dom Is] 

fn? E open A 8File = Is fn? 



www.manaraa.com

362 

Thus we have 

(pre FSysPromote) II File' 

== (FSysPromote \ FSys' \ File') II File' 

== [FSys; fn? : Name; !::.File I 
fn? E open II 8 File = Is fn?] \ File' II File' 

== [FSys; fn? : Name; File I fn? E open II 8File = Is fn?] II File' 

== [FSys; fn? : Name; !::.File I fn? E open II 8File = Is fn?] 

QED 

o 

== FSysPromote \ FSys' 

Corollary 2 The precondition for the promotion schema is 

pre FSysPromote 
== [FSys; fn? : Name; File I fn? E open II 8File = Is fn?] 

Proof: Derived from Theorem 9. 0 

Finally, we are in a position where we can calculate the preconditions of 
Read and FReat/o. 

Theorem 10 Read is a total operation 

pre Read == [File; k? : Key] 

Proof: 

pre Read 

== pre((Rea~ II Success) V KeyDoesntExist) 

== pre( Reat/o II Success) V 

pre K eyDoesntExist 

[def of Read] 

[pre disjunctive] 

== pre Reat/o V pre KeyDoesntExist [Theorem 8] 

== [File; k? : Key I k? E (dom I)] V [from above] 

[File; k? : Key I k? rt (dom I)] 
== [File; k? : Key I [schema disjunction] 

k? E (dom I) V k? rt (dom I)] 
== [File; k? : Key I true] [Law of the excluded middle] 



www.manaraa.com

QED 
o 

363 

Since Read is a total operation, and FSysPromote is a promotion, we 
need only the precondition of FSysPromote, with File hidden, to calculate 
the precondition of FReatkJ. 

Theorem 11 The precondition of FReatkJ is that the state invariant holds, 
and that the chosen file is open 

preFReatkJ == [FSysj k? : Keyj fn? : Name I fn? E open] 

Proof: 

preFReatkJ 

== pre((Read A FSysPromote) \ (AFile)) [by definition] 

== (pre FSysPromote) \ File [Theorems 9, 10, Corollary 1] 

== [FSysj fn? : Namej File I 
fn? E open A 8File = fs fn?] \ File [Corollary 2] 

== [FSysj fn? : Name I fn? E open A fs fn? E File] [one point rule] 

== [FSysj fn? : Name I fn? E open] 

since fs : Name -++ File, and fn? E open ~ dom fs. 

QED 
o 

7 Discussion 

In the last section we calculated the precondition of FReatkJ, using a number 
of small proofs. The only part of the calculation that is not reusable in the 
rest of the proofs is the calculation of the precondition of ReatkJ. In order to 
calculate the preconditions of FWriteo, FAdtkJ, and FDeleteo, we need first to 
calculate the preconditions of Writeo, AdtkJ, Deleteo, and KeyExists. These 
calculations are all of the same size as Theorem 5. Next, we need to combine 
these results in the manner of Theorem 11, using the results about Success 
and FSysPromote. It is clear that a great economy has been achieved using 



www.manaraa.com

364 

the laws of promotion and the schema operators. It is hoped that they will 
help to make proofs, and therefore software development, more manageable. 

The technique of promotion has been known in the Z community for at 
least eight years; however, this paper contains the first formal analysis of the 
technique. The observation of the connection between promotion and data 
refinement is new, and promises much in the way of future research. It offers 
a way of calculating data refinements, and calculation is always better than 
proof. The notion of data refinement here is similar to that in [Jones, 1986], 
in the sense that it is functional from the concrete (promoted) state to the 
abstract one. Perhaps the VDM community can also find something useful 
in these ideas. 

The form of promotion ((P /I. Prom) \ S) is identical to the form of the 
representation transformer in [Gardiner & Morgan, 1988]. They prove there 
that data refinement distributes through the program combinators; in this 
paper, we have shown that data refinement (promotion) distributes through 
the specification combinators, and these results are new. 

Acknowledgments 

I thank Paul Gardiner, Ian Hayes, Jeremy Jacob, Steve King, Jock McDoowi, and Carroll 
Morgan for their comments on an earlier draft. 

This paper has been produced as a contribution to the joint IBM-Oxford collabo

ration, which is applying Z to the development of CICS, and IBM's support is gratefully 

acknowledged. The technical ideas in this paper came about during the author's time 

as Gastprofessor at the University of Klagenfurt in Austria, supported by the Austrian 
Ministry of Science and the British Council. I thank the Rutherford-Appleton Laboratory 
for providing me with an Atlas Research Fellowship. 

8 References 

1. P. Gardiner & C. Morgan, "Data Refinement of Predicate Transform
ers" , in C. Morgan, K. Robinson & P. Gardiner, On the Refinement 
Calculus, Technical Monograph PRG-70, Programming Research Group, 
(1988). 



www.manaraa.com

365 

2. I. Hayes (editor), Specification Case Studies, Prentice-Hall Interna
tional, (1987). 

3. C.B. Jones, Systematic Software Development Using VDM, Prentice
Hall International, (1986). 

4. C.C. Morgan, Programming from Specifications, Prentice-Hall Interna
tional, (1990). in press 

5. C.C. Morgan & B.A. Sufrin, "Specification of the UNIX filing system", 
IEEE Transactions of Software Engineering, 1984, SE-IO(2}, 128-142. 

6. J.M. Spivey, Understanding Z: A Specification Language and its For
mal Semantics, Cambridge Tracts in Theoretical Computer Science, 3, 
(1988). 

7. J.M. Spivey, The Z Notation: A Reference Manual, Prentice-Hall In
ternational, (1989). 

8. J .C.P. Woodcock, Using Z: Specification, Refinement & Proof, draft 
book, Programming Research Group, 1989. 



www.manaraa.com

Abstract data types, 319, 330 
Abstraction, 352 
l\cronym engineering, 50 
Ada, 39, 43, 49-51, 76, 315, 320 
Ada Programning Support Environment 

(APSE), 29, 49 
Adaptive maintenance, 3 
AI/Lisp, 48 
AIMS, 41 
Air Traffic Control (ATC), 122-40 

roles of, 124-5 
Air Traffic Control Centre (ATCC), 122-

40 
viewpoint structure for, 125 

Air Traffic System (ATS), 122 
Airspace structure, 123-4 
Alvey progranme, 31, 93 
Apollo, 55, 59 
Applications backlog, 5 
Artificial Intelligence (AI), 48 
ASPECT project, 32, 78 
ASPIS project, 267 
ATIS, 76, 77 

Bachman diagram, 328 
BALZAC, 54 

Buffers, 99-100 

Bug-fixing, 2, 3, 58, 277 
Build, 47, 56 

Built-In Test E'quipnent (BITE), 102 

C, 76, 320 
CADES, 48, 85, 86, 88-93, 225, 311 
CAIS, 76 
CAIS-A, 76, 77 

CASE, 11, 43, 51-2, 60, 79, 267, 323 
CASE/IPSE convergence, 79 
CCS, 39 
Closed-loop system, 119 
COBOL, 12, 16 
COCOMO, 33, 54, 285 
Code cross reference, 276 
Code reading automation, 12 
Code structuring, 275 
Code swap testing, 203 

r N D E X 

Cognitive science, 20 
Commission of the European Communities 

(CEC), 51, 52 
Communicating Sequential Processes, 38 
Compatibility problems, 39 
Complexity metrics, 10 
Component re-use, 93 
Components, 333-5 
Compositional proof system, 346 
Computational complexity, 17 
Computational models, 151 
Computer Aided Development and 
Evaluation System. See CADES 

Computer Aided Software Engineering 
(CASE) tools. See CASE 

Computer hardware, 27 
Computer supported cooperative work 

(CSCW), 36-44 
Confidence levels, 160-1 
Configuration management, 9, 106, 111, 
130 

Configuration Manager (0\), 56 
Configuration system, 333 
Constraints, 131 
Contractual model, 53 
CORE, 14, 38, 39, 57, 58, 323 
Corporate familiarity, 119 
Corrective maintenance, 3, 4, 6 
Cost-benefit ratio, 176 
Costs 

incremental developnent and delivery, 
188-9 

software development, 158 
software maintenance, 4-5 
software re-engineering, 263 

Critical applications, 28 
Cross referencers, 13 
Customer confidence, 160-1 
Customer departments, 114 
Customer requirements, 117, 158-9 
CWEB, 47 

Daenon, 34, 41 
Ol\MJKLES, 78 
Data capture, 132 

367 



www.manaraa.com

Data collection, 224, 281-304 
initial principles, 296-8 
lessons learned about, 299-301 
resume of experiences, 296 
technology changes during, 300 
three stage process, 283 

Data display, 132 
Data flow diagrams, 275 
Data fusion, 132 
Data models, 283, 289-94 

development, 292-4 
Data types, 319 
De-J::ugging techniques, 2, 3, 58, 277 

Decision-making, 112, 113, 120 
Design authority, 226 
Design changes, 106 

Design concept, 102 
Design managers, 100 
Design modification, 270 
Design FhilosoFhy, 99 

Design reviews, 118, 226 
Design techniques, 17, 116, 178, 224 
Development techniques, 224-5 
Digital data processing, 100 
Digital signal processing. 100 
Diversity, 143 
Documentation. 6, 13, 17, 18, 107, 119, 

271, 275, 278 
lXInain knowledge, 12 
Domain Software Engineering 
Envirorunent. See DSEE 

DSEE, 55-7. 59 
Dynamic analysis, 12 

ECLIPSE project, 31 
Embedded real-time systems. See Real-

time embedded systems 
Emergency repairs, 3 
Engineering projection, 151 
Enhancerrent. 2 

Enterprise critical applications, 28 
Enterprise projection, 151 
Entity-Attribute-Relationship 
modelling, 291 

Entity-relationship models, 32 
Errors. 3. 8, 199 

correction, 89 
for individual files, 349-50 
on named files, 350 

ESPRIT II, 18 
Estimation, 103 
European Fighter Aircraft. 276 
Evolutionary delivery. 166-7 
Existing code characteristics, 5-6 
Existing code maintenance, 5-16 
Experimental Aircraft Programne (EAP). 

39. 57- 8 

368 

Expert systems, 14, 20, 85 

Fault report clearance, 269-70 
Fault tolerance. 322 
Faults, 3, 6 

classification of, 321 
diagnosis, 273 
in object-oriented design, 320-2 
investigation, 121 
repair of. 321-2 

Federal Aviation Administration 
National Airspace System. 15 

Federal Software Management Center, 16 
Filestore Management System (FMS), 244 
Flight Data Processing (PDP), 122-40, 

426-7 
overview of, 426 

Flight Information Regions (FIRs), 123 
Forms, 120 
FCR'lRAN, 320 
Fourth generation languages (4GLs). 7, 

13, 51 
Fragmentation, 144 
Framework incremental life cycle, 167-8 
Framing. definition. 347 
Function-oriented design, 316. 317 
Functional subsystems, 224 

General Service Administration (GSA), 

16 
GENESIS, 54 
Geriatric code. 5 

Hardware maintenance, 1 
Hardware-software interface, 99-100 
Hardware team, 101 

Hewlett Packard (HP). 55 
High integrity systems, 62-75 

objectives. 62-3 
High level programning languages, 27 
High-risk projects, 117 
History Manager (HM), 55 
Human-Computer Interface. 131 
Hypertext applications, 276 

Imperial Software Technology (1ST), 53 
IMSE (Integrated Modelling Support 
Environment). 325 

Incorporated prototype. 171 
Incremental J::uild and test, 164 
Incremental development and delivery. 
89, 111. 156-95 

advantages of, 182-6 
comparative costs, 188-9 
canparative scheduling, 190-1 
definitions. 163-5 
financial/contractual problems. 180-2 



www.manaraa.com

Incremantal developnent and delivery 
(contci.) 
hardware related problems, 177 
life cycle models, 164 
life cycle problems, 177-9 
management problems, 179-80 
problems of, 176-82 
research, 173 
strategy, 174-6 
suitability of system, 174 
summary of effects, 187 
user-developer relationship, 182 

Incremental prototype, 171 

Increments, 165 
designio;! , 175 
partitioning system into, 174-5 

Indexed file system, 347-52 
Individuals, 116 
Information, 107 

abstraction, 273 
dissemination, 312-13 
process, 330 
projection, 151 

Inspection, 226 
Integrated developnent process, 85 
Integrated Project Support 
Environments. See IPSEs 

Integrated support systems, 92 
Integrated Systems Architecture (ISA) 
project, 141-55 

technical assumptions for, 152-4 
Integration, 142-3, 146 

ooncept of, 29 
Integrity 

belief in, 65-6 
use of term, 63-4 

Integrity control objectives, 64-5 
Integrity labels, 66 

Integrity related objectives, 66 

Internal trace, 277 
International Civil Aviation 
Organisation (ICAO), 123 

Inverse eo:Jineerio;!, 13-15 
I/O based system, 278 
IPSE 2.5 project, 305-6, 309 
IPSEs, 8, 27-83, 282 

activities, 70-1 
and CASE, 51-2, 79 
attributes, 71 

basic aim in populating, 37 
basic concepts underlying, 29 
basic requirements, 28, 37-9 
binary relations, 73 
ccmnercial object oriented, 78 
consistency objectives, 73 
constraints on establishing a 
coherent method set, 40-1 

369 

control objectives, 73 
cost-effectiveness, 75 
current capabilities, 53-61 
current designs and aspirations for, 

43 
current survey, 42-61 
data categories, 69-70 
databases, 35, 77 
design trends, 76 
developnent of, 29 
early integrated environments, 48-9 
effectiveness of, 75 
elaborating control Objectives, 74 
evolution of, 42 
examples of method integration, 39 
general observations, 59-61 
general principles, 29-41 
general requirements, 41 
groups of tools, 45-7 
handshake protocol, 35 
historical perspective, 42-52 
implementation, 75, 77-8 
individual tools, 44 
influence of Ada, 49-51 
infrastructure and integration, 29-
36, 41, 52 

integrity levels, 71 
integrity requirements, 28 
interface integration, 30-2 
kernel of, 29 
management integration, 33-4 
marketing, 53 
measurement in, 34 
model of entities that comprise and 

interact with, 67-73 
nature of current, 52 
objectives of, 27 
performance of, 60 
primary research issues, 42 
process-based, 289 
programs, 70 
project management, 34 
properties of entities, 72 
relations needed, 72 
requirements, 62 
roles, 68-9 
Safra, 57-8, 60, 62, 80 
scaling, 60 
Stoneman document on, 29 
team integration, 34-6 
timescales required for developing, 

43 
tool integration in, 47 
transition objectives, 73-4 
type systems, 72 
use of term, 50 
see also High integrity systems 



www.manaraa.com

ISE (Incremental Software En;Jineering), 

173 
ISrAR, 53-4, 59, 60 

Jackson System Development, 51 

Keyboards, 101 
Knowledge based systems, 20, 267 
Knowledge categories used in software 

maintenance, 272 

Knowledge development, 159 
Knowledge engineering, 267-80 

Large scale product, 311 

Large scale system, 311 
lDRA Testbed, 200 

Life cycle models, 8, 157, 162 

Local Area Network (IAN) teclmology, 

129-30 

Logic splitting, 262 

Maintenance management, 6-7 

basic steps in, 7 
human aspects area of, 7 

Maintenance metrics, 10-11 
validation, 11 

Maintenance programners, 6, 11 

Make, 45-7, 56 

MALPAS, 200 

Management checkpoints, 222 

Management support, 311 

Maritime Aircraft Systems Division, 205 

MASCOT, 38, 39, 57, 58, 318, 323 
Material projection, 152 

Mathematics as management tool, 345-65 
me too, 326-8, 330, 332-4 

Measurement teclmiques, 34, 223-4 
Message Trace Analyser, 277 

Metrics 

list of attitudes to, 303 

relatiooship with process models, 300 

Metrics collection, goals, 284-5 

Metrics of maintenance. See 

Maintenance metrics 
Military security critical 

applications, 28 

Military software, 2, 66 
Minimal APSE (MAPSE), 50-1 

Miranda, 326 

Model manipulation, 273 
Monitor Manager (~), 56 

MJI'IF, 31, 56 
Multi-media integration, 147-8 

Multi-vendor systems, 141-55 

Named files, 351-2 

National Bureau of Standards, 16 

370 

New Range Planning Organisation, 87 

Nodes, 335 

OBJ, 172 
Object classes, 319 
Object-oriented design, 102, 315-24 

and object-oriented programming, 319-

20 
overview of, 316-19 

reliability of, 320-2 
risks involved with, 322-3 

Object-oriented programming, 48-9, 319-

20 
Objective-C, 320 

Open Software Foundatioo, (OSF), 31 

Open Systems Interconnectioo (OSI), 145 

Open Tool Interface (orI), 30-2 

OpenLook, 31 
Operating systems, 147 

CRACLE, 51 

Order registration system, 328, 329, 

331 
Organisational structure, 100, 119 
OS/360, 6 
OSI Reference Model, 144, 145 
OSIRIS system, 278 

Parallelism, 146 

Parochialism, 112-14, 117 
Parser writers, 13 

Pascal, 57, 320 
Patching, 3 

PCTE, 52, 76 
PCTE+, 62, 74, 75, 77 

Perfective maintenance, 3, 5 
Performance, 103 

Performance analysis, 333-41 
Performance modelling, 327 

Performance specificatioo, 327-8 

Perspective, 57, 58, 60 

Perspective Pascal, 58 
Perversity, 114-15 
Phased development, 168-9 

PISA (Persistent Information Space 

Architecture), 309 

PL/1, 15 

Politics, 112-14 
POPL(X;, 48 

POSIX, 77 

Presenter, 32 

Preventative maintenance, 3, 4 
Prioritising, 175-6 

Procedures, 120 
Process control engine (PCE), 306, 308 
Process modelling language (PM!.), 306-8 
Process models, 79, 283, 285-9 

defining, 300 



www.manaraa.com

Process trodels (oontd.) 
development, 292-4 

Process Support Environments, 305-14 
applicability to large scale 
products, 311-13 

Program analysis, 277 
Program oanprehension and 

understanding, 11-13 
Program evolution, 8 
Programner's Work Bench (PWB), 45 
Progranming group, 108 
Progranming language developnent, 16 
Progranming languages, 104, 146 
Progranming plans, 274 
Project disasters, 96-121 
Project management, 34, 108-11 
Project manager, 107, 110, 111, 113, 

117, 118, 120, 217, 218 
Project requirements, 97-8 
Project teams, 116, 117 
Projections, 150-2 
Promotion, 345-65 

definition, 347 
intuitive definition, 352 
proof rules for, 353-7 

Proof of correctness of file system, 
357-63 

Proof rules for promotion, 353-7 
Protocol design, 147 
Prototyping, 169-70 
PSL/PSA database, 57 
Psychological complexity, 17 
Public Tools Interface (PTI), 29-32, 
47, 50, 52, 60, 62, 76, 77, 93 
and tool integration, 32-3 

Quality aspect, 5 
Quality assurance, 15-16, 104-7, 120 
Quality attributes, 222 
Quality control, 119 
Quality department, 120 
Quality investment, 231 
Quality management, 221-2 
Quality manager, 107 

Radar Data Processing (RDP), 122-40 
OITerview, 426 

Rapid prototyping, 169 
Real-time Embedded systems, 96-121, 

267-80 
background to maintenance, 268-71 

REXXlDER, 13 
Recovery of software projects, 209-19 

example scenario, 214-15 
key issues in, 213-14 
planning, 215 
problems of, 215-16 

371 

project staff, 217-18 
reasons for, 210 
sick project, 210-13 
use of tools for, 216-17 

Redocumentation, 15 
Re-engineering. See Software re-

engineering 
Release, 9 
ReJTDte procedure call (RPC), 146 
REQUEST, 282, 283, 299 
Requirement trodification, 270 
Requirement specification, 178 
Requirements reviews, 118 
Resource usage analysis, 335-9 
Restructuring tools, 13 
REI'ROFIT, 13 

Reverse engineering, 13, 15 
definition, 253 

Safety critical applications, 28 
Safra, 39, 57-8, 60, 62, 80 
sees, 32, 45 
Scheduling, 175-6 
SDL (System Development Language), 90 

Secondary Surveillance Radar (SSR), 

127-9, 132 
Semantic knowledge, 11 
SIMMER project, 327 
Sizing, 333 
Skill problem, 131 
Srnalltalk, 48, 60, 320 
SOCRATES project, 267, 278 
Software, use of term, 85 
Software architecture, 224 
Software Architecture Modelling, 325-44 
SoftWare Data Library (SWDL) project, 

282, 299 
Software development, 4, 5 

large projects, 84-95 
problems of, 27, 157-61 
process, 86 
projects, 27 
research, 8 

Software Diagnostic Aid, 267 
Software engineering, 5, 88 

standards, 133 
Software Factory, 85, 282 
Software lifecycle, 198-9 
Software maintainability, 16-18 
Software maintenance, 159-ff) 

cost of, 4-5 
existing solutions, 274-6 
frequently occurring activities, 273 
future solutions, 276 
key issue of, 18-19 
knowledge used in, 272-4 
main activities of, 269 



www.manaraa.com

Software maintenance (contd.) 

planning objectives, 18 

real-time errbeclded systems, 267-80 
research topics in, 19- 21 

status of, 2, 18-19 

support currently available, 274-6 

types of activity, 3-4 

use of tenn, 1 

Software Maintenance Association (SMA), 

19 
Software management, 2 
Software metrics, 10 

Software m:xiifications, 3, 5, 6 
Software process m:xl.els, 40 
Software prototyping, 108 
Software re-engineering, 13, 252-80 

analysis and production of 
specifications, 259 

benefits of, 263-4 

case history, 254-5 

cosmetic, 260 
costs, 263 
criteria, 257 

definition, 253 

estimating, 256 

main project, 259 

rrotives for, 254 

overview of, 254 

pilot project, 255-8 
results, 263 

structural, 260 
summary of findings, 264-5 

testing and acceptance, 262 

tools requirements, 257-8 
updating specifications, 259 

Software reliability, 2, 220-35 
Software requirement specification, 98 

Software restructuring, 15 
Software reusability, 13 
Software team, 100, 101, 118 

Software technology, 2 

Software testing. See Testing 
Source Code Control System (sx:5), 32, 45 

Source code metrics, 10 

Source codes, 6, 17 

sp, 327-8, 333 

SPADE, 200 

SSADAM, 39 

SSADM, 318, 323 
SSR, 127-9, 132 

Stability metrics, 11 

Standards, 133, 142-5, 225 

STARTS guide, 52, 53 
Static analysis, 12 
STEPS (Software Technology for 
Evolutionary Participative System 
Development), 173 

372 

Stoneman architecture, 49-50 

Structural analysis, 328-33 

Structural m:xl.elling, 89-93 
Structured analysis, 51 

Structured analysis diagrams, 29 

Structured design techniques, 17 

Subsystem life cycle, 130 

Success factors, 117 

SUN, 31 
SUPERSmUCIURE, 14 
Support envirorunents, 86, 89 

future, 93 

SWDL, 282, 299 

Symbolics, 48 
Syntactic knowledge, 11 

System architecture, 148-50 
System canplexity, 17 

System Control Language (SCL), 248 

System evolution, 2 

System m:xl.elling, 150-2 

System m:xl.ulari ty, 17 
System redevelopment, 2 
System trial, 229 

System upgrades, 278 

Systems planning, 133 

Task force teams, 110 

Task Manager ('lM), 55 
Terminal Manoeuvering Area ('!MA), 124 

Test authority, 226 

Testing, 159-60, 178 
attitooes to, 201-2 

m:xiified system, 271 

software re-engineering, 262 
tools and techniques, 226-30 

Throw-away prototype, 170-1 
WM transformation system, 15 
Tool-intensive incremental development, 
172 

Tool integration and PTIs, 32-3 

Tool support, 7, 9 

Transformational theory, 14 

Transformations, 14 

Trust, 236-51 
types of, 246 

Trust invocation points, 249-50 

Trusted Can~ting Base (TCB), 236 

classes of software, 241-2 

structure of, 239-40 
Trusted execution tree, 249 

Trusted Processes, 236 

categories of, 243-4 

concept of, 242-3 
evaluation of, 247-50 

Trustworthy entities, 245 

UI Server, 309 



www.manaraa.com

UNIX, 29-31, 33, 45, 47, 48, 51, 55, 
76, 145, 147, 347 

UNIX make tool, 10 
User interface management system 

(UIMS), 31, 32 

Validaticn 
naintenance metrics, 11 
see also Verification and validation 

YOM, 172, 323, 326 
Verification and validation (V&V), 196-

208 
definitions, 198-201 
group development, 206 
important lessons, 207 
independence in, 201-5 
MASD experience with, 205-7 
teclmiques for, 200 
training, 206-7 

373 

Version management, 8-9 
Version number, 9 
VME, 48, 84-95, 220-1, 224, 23 

development case study, 230-
historical perspective, 85-9 

VME HSO, 64, 75 
V-nodel, 157 

Waterfall nodel, 157, 162-3 
Wide Area Networks, 129 
Windowing standards, 31 
Windowing system, 31 
Workload analysis, 339-41 

X/Open, 145 
X-windows, 31, 56 

Z notation, 39, 54, 172, 323, 
65 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




